Skip Navigation


Jonathan G. Rudick, Associate Professor

Jonathan (Jon) G. Rudick

B.S. Case Western Reserve University (2000)
Ph.D. University of Pennsylvania (2005)
Scientist, Procter & Gamble (2005-2007)
NIH Postdoctoral Fellowship, University of Pennsylvania, School of Medicine (2007-2010)

775 Chemistry
Phone: (631) 632-7630

The Rudick Lab Website

Organic, Polymer, and Supramolecular Chemistry

The Rudick lab is interested in strategies to minimize or even eliminate heterogeneity in multifunctional materials. Heterogeneity in multifunctional polymers and nanoparticles complicates the interpretation of structure-property relationships and can lead to batch-to-batch variability in properties. Several types of heterogeneity arise in polymers made up from different functional monomers including: (i) chain length (or molecular weight) dispersity, (ii) non-uniformity of monomer sequence, and (iii) differences in the ratio of monomers incorporated in each polymer molecule. Existing analytical tools are insufficient to characterize these complex mixtures, so we are exploring synthetic and supramolecular chemistry approaches to tame the complexity of multifunctional materials. Strategies for controlling either the ratio or arrangement of the monomers can yield materials with highly tailored properties or properties that are unique from those of heterogeneous polymer materials.
Multicomponent Reactions as Methods for Controlled Multifunctionalization
Multicomponent reactions combine three different reactants into a single product, which is advantageous for the synthesis of multifunctional materials. We have shown that the Passerini three-component reaction can be used to control the ratio of functional subunits in three-arm star-branched liquid crystals (Org. Lett. 2015) as well as in dendritic polymers (Org. Lett. 2012; Chem. Commun. 2015). Additionally, multicomponent reactions offer advantages such as efficiency and versatility. We are exploiting the advantages of multicomponent reactions to explore properties that are unique to these well-defined multifunctional materials.
Self-Assembly and Self-Organization of Peptide-Dendron Hybrids
Iterative synthesis methods have enabled the synthesis of monodisperse and sequence-defined macromolecules such as peptides and dendrimers. Combining the diverse physical properties that are available to different dendrimers with the folding and self-assembly behaviors of peptides yields hybrid biomaterials whose properties can be tailored with exceptional precision. We have developed a convenient and bioorthogonal approach grafting dendrons to peptides (Biopolymers 2015). We have shown that protein design principles can be applied to the design of peptide-dendron hybrids that self-assemble into dendronized helix bundle motifs (Chem. Commun. 2015; Biomacromolecules 2016).


  1. S. Song, D. Sahoo, M. Kumar, D. A. Barkley, P. A. Heiney & J. G. Rudick. “Identifying structural determinants of mesomorphism from focused libraries of tripedal mesogens prepared via the Passerini three-component reaction.” Eur. J. Org. Chem. 2019, 1195–1206. (doi: 10.1002/ejoc.201801360)
  2. T. Koga, D. A. Barkley, M. Nagao, T. Taniguchi, J.-M. Y. Carrillo, B. G. Sumpter, T. Masui, H. Kishimoto, M. Koga, J. G. Rudick & M. K. Endoh. “Interphase structures and dynamics near nanofiller surfaces in polymer solutions” Macromolecules 201851, 9462–9470. (doi: 10.1021/acs.macromol.8b01615)
  3. D. A. Barkley, S. U. Han, T. Koga & J. G. Rudick. “Peptide-Dendron Hybrids that Adopt Sequence-Encoded β-Sheet Conformations.” Polym. Chem. 20189, 4994–5001. (doi: 10.1039/c8py00882e)
  4. D. A. Barkley, Y. Rokholenko, J. E. Marine, R. David, D. Sahoo, M. D. Watson, T. Koga, C. O. Osuji & J. G. Rudick. “Hexagonally ordered arrays of α-helical bundles formed from peptide-dendron hybrids.” J. Am. Chem. Soc. 2017139, 15977–15983. (doi: 10.1021/jacs.7b09737)
  5. D. A. Barkley, N. Jiang, M. Sen, M. K. Endoh, J. G. Rudick, T. Koga, Y. Zhang, O. Gang, G. Yuan, S. K. Sajita, D. Kawaguchi, K. Tanaka & A. Karim. “Chain conformation near the buried interface in nanoparticle-stabilized polymer thin films.” Macromolecules 201750, 7657–7665. (doi: 10.1021/acs.macromol.7b01187)
  6. J. E. Marine, S. Song, X. Liang, & J. G. Rudick. "Synthesis and self-assembly of bundle-forming α-helical peptide–dendron hybrids.” Biomacromolecules 2016, 17(1), 336-344. (doi: 10.1021/acs.biomac.5b01452)
  7.  J. E. Marine, S. Song, X. Liang, M. D. Watson & J. G. Rudick. “Bundle-forming α-helical peptide-dendron hybrid.” Chem. Commun. 2015, 51, 14314-14317. (doi: 10.1039/c5cc05468k)
  8.  S. Song & J. G. Rudick. “Efficient syntheses of star-branched, multifunctional mesogens.” Org. Lett. 2015, 17, 3244-3247. (doi: 10.1021/acs.orglett.5b01388)
  9.  D. A. Barkley, T. Koga & J. G. Rudick. “Homeotropically aligned self-organizing dendronized polymer.” Macromolecules 2015, 48, 2849-2854. (doi: 10.1021/ma502522s)
  10.  J. E. Marine, X. Liang, S. Song & J. G. Rudick. “Azide-rich peptides via an on-resin diazotransfer reaction.” Biopolymers 2015, 104, 419-426. (doi: 10.1002/bip.22634)
  11.  J.-A. Jee, S. Song & J. G. Rudick. “Enhanced reactivity of dendrons in the Passerini three-component reaction.” Chem. Commun. 2015, 51, 5456-5459. (doi: 10.1039/c4cc10091c)
  12.  X. Liang, M. K. Sen, J.-A. Jee, O. Gelman, J. E. Marine, K. Kan, M. K. Endoh, D. A. Barkley, T. Koga & J. G. Rudick. “Poly(oxanorbornenedicarboximide)s dendronized with amphiphilic poly(alkyl ether) dendrons.” J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 3221–3239. (doi: 10.1002/pola.27385)
  13.  J. G. Rudick, M. M. Laakso, A. C. Schloss & W. F. DeGrado. “Template-constrained cyclic sulfopeptide HIV-1 entry inhibitors.” Org. Biomol. Chem. 2013, 11, 7096–7100. (doi: 10.1039/c3ob41395k)
  14.  J. G. Rudick. “Nanomechanical function arising from the complex architecture of dendronized helical polymers.” Adv. Polym. Sci. 2013, 262, 345–362. (doi: 10.1007/12_2013_241)
  15.  J. G. Rudick. “Innovative macromolecular syntheses via isocyanide multicomponent reactions.” J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3985–3991. (doi: 10.1002/pola.26808)
  16.  J.-A. Jee, L. A. Spagnuolo & J. G. Rudick. “Convergent synthesis of dendrimers via the Passerini three-component reaction.” Org. Lett. 2012, 14, 3292-3295. (DOI: 10.1021/ol301263v)
  17.  J. G. Rudick & V. Percec. “Nanomechanical function made possible by suppressing structural transformations of polyarylacetylenes.” Macromol. Chem. Phys. 2008, 209, 1759–1768. (DOI: 10.1002/macp.200800271)
  18.  J. G. Rudick & V. Percec. “Induced helical backbone conformations of self organizable dendronized polymers.” Acc. Chem. Res. 2008, 41, 1641–1652. (DOI: 10.1021/ar800086w)
  19.  V. Percec, J. G. Rudick, M. Peterca & P. A. Heiney. “Nanomechanical function from self–organizable dendronized helical polyphenylacetylenes.” J. Am. Chem. Soc. 2008, 130, 7503–7508. (DOI: 10.1021/ja801863e)
  20.  V. Percec, J. G. Rudick, M. Peterca, M. E. Yurchenko, J. Smidrkal & P. A. Heiney. “Supramolecular structural diversity among first generation hybrid dendrimers and twin–dendrons.” Chem. – Eur. J. 2008, 14, 3355–3362. (DOI: 10.1002/chem.200701658)
  21.  V. Percec, M. Peterca, M. E. Yurchenko, J. G. Rudick & P. A. Heiney. “Thixotropic twin–dendritic organogelators.” Chem. – Eur. J. 2008, 14, 909–918. (DOI: 10.1002/chem.200701273)
  22.  V. Percec, M. Peterca, J. G. Rudick, E. Aqad, M. R. Imam & P. A. Heiney. “Self–assembling phenylpropyl ether dendronized helical polyphenylacetylenes.” Chem. – Eur. J. 2007, 13, 9572–9581. (DOI: 10.1002/chem.200701008)
  23.  V. Percec, J. G. Rudick, M. Peterca, E. Aqad, M. R. Imam & P. A. Heiney. “Synthesis, structural and retrostructural analysis of helical dendronized poly(1 naphthylacetylene)s.” J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 4974–4987. (DOI: 10.1002/pola.22265)
  24.  J. G. Rudick & V. Percec. “Helical chirality in dendronized polyarylacetylenes.” New J. Chem. 2007, 31, 1083–1096. (DOI: 10.1039/b616449h)
  25.  V. Percec, E. Aqad, M. Peterca, J. G. Rudick, L. Lemon, J. C. Ronda, B. B. De, P. A. Heiney & E. W. Meijer. “Steric communication of chiral information observed in amphiphilic dendronized polyacetylenes.” J. Am. Chem. Soc. 2006, 128, 16365–16372. (DOI: 10.1021/ja0665848)
  26.  V. Percec, J. G. Rudick, M. Wagner, M. Obata, C. M. Mitchell, W.–D. Cho & S. N. Magonov. "AFM Visualization of individual and periodic assemblies of a helical dendronized polyphenylacetylene on graphite." Macromolecules  2006, 39, 7342–7351. (DOI: 10.1021/ma060845g)
  27.  V. Percec, J. G. Rudick, M. Peterca, S. R. Staley, M. Wagner, M. Obata, C. M. Mitchell, W.–D. Cho, V. S. K. Balagurusamy, J. N. Lowe, M. Glodde, O. Weichold, K. J. Chung, N. Ghionni, S. N. Magonov & P. A. Heiney. "Synthesis, structural analysis, and visualization of a library of dendronized polyphenylacetylenes." Chem. – Eur. J. 2006, 12, 5731–5746. (DOI: 10.1002/chem.200600009)
  28.  V. Percec, J. G. Rudick, M. Peterca, M. Wagner, M. Obata, C. M. Mitchell, W.–D. Cho, V. S. K. Balagurusamy & P. A. Heiney. "Thermoreversible cis–cisoidal to cis–transoidal isomerization of helical dendronized polyphenylacetylenes." J. Am. Chem. Soc. 2005, 127, 15257–15264. (DOI: 10.1021/ja055406w)
  29.  V. Percec, J. G. Rudick & E. Aqad. "Diminished helical character in para–substituted cis–transoidal polyphenylacetylenes due to intramolecular cyclization." Macromolecules 2005, 38, 7205–7206. (DOI: 10.1021/ma051536d)
  30.  V. Percec & J. G. Rudick. "Independent electrocyclization and oxidative chain cleavage along the backbone of cis–poly(phenylacetylene)." Macromolecules 2005, 38, 7241–7250. (DOI: 10.1021/ma051060y)
  31.  V. Percec, M. Obata, J. G. Rudick, B. B. De, M. Glodde, T. K. Bera, S. N. Magonov, V. S. K. Balagurusamy & P. A. Heiney. "Synthesis, structural analysis, and visualization of poly(2–ethynyl–9–substituted carbazole)s and poly(3–ethynyl–9–substituted carbazole)s containing chiral and achiral minidendritic substituents." J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3509–3533. (DOI: 10.1002/pola.10458)
  32.  V. Percec, J. G. Rudick, P. Nombel & W. Buchowicz. "Dramatic decrease of the cis–content and molecular weight of cis–transoidal polyphenylacetylene at 23 ºC in solutions prepared in air." J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3212–3220. (DOI: 10.1002/pola.1042