Skip Navigation
Search

Rogers

A. Deanne Rogers

Associate Professor
Office: ESS 318 
Phone: 631-632-1509
E-mail: deanne.rogers@stonybrook.edu   


B. S., College of Charleston, 1998
M. S., Arizona State University, 2001
Ph.D., Arizona State University, 2005
Postdoctoral Scholar, California Institute of Technology, 2005-2007
Faculty member at Stony Brook since 2007

Professor Rogers uses remote sensing techniques, statistical methods, laboratory spectroscopy and thermal modeling to investigate a wide range of planetary surface processes. A detailed description of her research interests and activities may be found here. Rogers manages the Earth and Planetary Remote Sensing Laboratory within the Stony Brook Center for Planetary Exploration.


Selected publications:

*denotes student author 

Rogers, A. D., N. H. Warner, M. P. Golombek, J. W. Head III, and *J. C. Cowart (2018). Areally extensive surface bedrock exposures on Mars: Many are clastic rocks, not lavas. Geophysical Research Letters, 45, https://doi.org/10.1002/2018GL077030 

Sklute, E. C., A. D. Rogers, *J. C. Gregerson, H. B. Jensen, R. J. Reeder, and M. D. Dyar (2018), Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars, Icarus, 302, 285-295. 

*Yant, M. H., K, E. Young, A. D. Rogers, A. C. McAdam, J. E. Bleacher, J. L. Bishop, and S. A. Mertzman (2018), Visible, Near-Infrared and Mid-Infrared Spectral Characterization of Hawaiian Fumarolic Alteration near Kilauea's December 1974 Flow: Implications for Spectral Discrimination of Alteration Environments on Mars, American Mineralogist, 103, 11-25. 

*Pan, C., A. D. Rogers, and M. T. Thorpe (2015), Quantitative Compositional Analysis of Sedimentary Materials Using Thermal Emission Spectroscopy: 2. Application to Compacted Fine-grained Mineral Mixtures and Assessment of Applicability of Partial Least Squares (PLS) Methods, J. Geophys. Res.—Planets, 120, 1984–2001, doi:10.1002/2015JE004881, 2015. 

*Thorpe, M. T.,A. D. Rogers, T. F. Bristow, C. Pan (2015), Quantitative Compositional Analysis of Sedimentary Materials Using Thermal Emission Spectroscopy: 1. Application to Sedimentary Rocks, J. Geophys. Res. Planets, 120, doi:10.1002/2015JE004863. 

A.D. Rogers and H. Nekvasil (2015), Feldspathic rocks on Mars: Compositional constraints from infrared spectroscopy and possible formation mechanisms, Geophys. Res. Lett., 42, 2619-2626, doi: 10.1002/2015GL063501, 2015. 

*Tamborski, J.J.,Rogers, A.D., Bokuniewicz, H.J., Cochran, J.K., Young, C.R. (2015), Identification and quantification of diffuse fresh submarine groundwater discharge via airborne thermal infrared remote sensing, Remote Sensing of Environment, http://dx.doi.org/10.1016/j.rse.2015.10.010. 

*Sklute, E. C., H. Jensen, A. D. Rogers, and R. J. Reeder (2015), Morphological, Structural, and Spectral Characteristics of Amorphous Iron Sulfates, JGR-Planets, DOI: 10.1002/2014JE004784. 

*Pan, C., A. D. Rogers, and J. R. Michalski (2015), Thermal and Near-Infrared Analyses of Central Uplifts of Martian Impact Craters: Evidence for a Heterogeneous Martian Crust, JGR-Planets, DOI: 10.1002/2014JE004676. 

Rogers, A. D. and V. E. Hamilton (2105), Compositional Provinces of Mars from Statistical Analyses of TES, GRS, OMEGA and CRISM Data, JGR-Planets, 120, 62-91, doi:10.1002/2014JE004690. 

Rogers, A.D. and A. H. Nazarian*(2013), Evidence for Noachian flood volcanism in Noachis Terra, Mars and the possible role of Hellas impact basin tectonics, Journal of Geophysical Research—Planets, Vol. 118, p.1-20, doi:10.1002/jgre.20083. 

Rogers, A. D., and R. L. Fergason (2011), Regional-Scale Stratigraphy of Surface Units in Tyrrhena and Iapygia Terrae, Mars: Insights Into Highland Crustal Evolution and Alteration History, J. Geophys. Res., doi:10.1029/2010JE003772. 

Rogers, A. D. (2011) Crustal Compositions Exposed By Impact Craters in the Tyrrhena Terra Region of Mars: Considerations for Noachian Environments, Earth and Planetary Science Letters, 301, 353-364, 10.1016/j.epsl.2010.11.020. 

Rogers, A. D. and J. L. Bandfield (2009), Mineralogical Characterization of Mars Science Laboratory Candidate Landing Sites from THEMIS and TES Data, Icarus, 203, 10.1016/j.icarus.2009.04.020. 

Rogers, A. D., O. Aharonson, and J. L. Bandfield, Geologic context of in situ rocky exposures in Mare Serpentis, Mars:  Implications for crust and regolith evolution in the cratered highlands, Icarus, 200, 446-462, 2009. 

Rogers, A. D. and O. Aharonson, Mineralogical composition of sands in Meridiani Planum from MER data and comparison to orbital measurements, J. Geophys. Res.—Planets, 113, E06S14, doi:10.1029/2007JE002995, 2008. 

Rogers, A. D., and P. R. Christensen, Surface mineralogy of martian low-albedo regions from MGS-TES data:  Implications for crustal evolution and surface alteration, J. Geophys. Res.—Planets, 112, E01003, doi: 10.1029/2006JE002727, 2007.