Skip Navigation
Search

FAQs


What are the objectives of the NYS Center for Clean Water Technology?

The NYS Center for Clean Water Technology was developed to marshal the public and private-sector resources of New York State and beyond to develop and commercialize water quality restoration and protection technologies. Though this effort began with  developing next generation approaches for handling household wastewater that are more efficient at removing nitrogen and other contaminants, less expensive, easier to operate, and smaller in size, we have since expanded to drinking water research and beyond. While our focus is on solving the water quality issues on Long Island, the solutions developed by the Center will be applicable to other parts of the United States and globally.    


What are the affects of nitrogen in water?

On Long Island, as in many other developed areas that rely on individual onsite wastewater management, the nitrogen/nutrient-laden effluent that emanates from these systems has been linked directly to the degradation of ground and surface water quality, and to the proliferation of Harmful Algal Blooms (HABs) like the red, brown and rust tides that have caused devastation of once bountiful marine populations and habitats. Nitrogren adversely affects coastal resiliency, environment, economy, land values, tourism, and recreational use of waters. In addition, the loss of wetland, seagrass and salt-marsh caused by nitrogen greatly decrease the tidal wetlands ability to protect communities from storm damage. 


Are other areas affected by nitrogen/nutrient-laden effluent?

Many other states across the United States eastern seaboard including MA, RI, MD, VA, and FL all face a similar scenario.  Moreover, 25% of homes in the United States have cesspools and septic tanks (US Census Bureau) and household wastewater represents a major pollutant in many locations across the globe.


What is an NRB?

A Nitrogen Removing Biofilter is a form of passive wastewater treatment, which means they contain few moving parts (e.g., a single low pressure dosing pump) and operate largely by gravity, making them low-energy, low-maintenance and thus, low cost. These systems have demonstrated an ability to consistently achieve high percentages of total nitrogen removal (up to 90%), as well as efficient attenuation of pathogens, viruses, phosphorous, and PPCPs.


What are PPCPs?

PPCP stands for  Pharmaceuticals and  Personal  Care  Products.  Current  individual onsite wastewater systems, while effective at protecting people and animals from the pathogens present in wastewater, are not designed to remove nutrients, pharmaceuticals, or other personal care products that pass through them. Examples of PPCPs  include items such as DEET, Bisphenol A, Nicotine, Acetaminophen, Caffeine, Ibuprofen, Warfarin, Acesulfame K, Cotinine, Paraxanthine, DEET, Chlofibric Acid, Primidone, Naproxen, Carbamezapine, Salbutamol (Albuterol), Gemfibrozil, Cimetidine, Sulfamethoxazole, Ketoprofen, Diphenhydramine, Propranolol, Atenolol, Metoprolol, TCEP, Trimethoprim, Diclofenac, Warfarin, Fluoxetine, Ranitidine, Furosemide, Ciprofloxacin, Nifedipine, Fenofibrate, Amoxicillin, Diltiazem, Atorvastatin, Azithromycin, Furosemide, Estrone, β-Estradiol, 17α-Ethynylestradiol, and Nonylphenol. 


What are the sources of PPCPs?

PPCPs can originate from numerous sources, but primarily they come from people.  When people take medications, only a small portion is absorbed by the body.  In addition, PPCPs can come from fragrances, soaps, and preservatives which are found in shampoos, laundry and dish-washing detergents, and consumer products that are washed down the drain during a shower or when washing one’s hands.  According to the United States Environmental Protection Agency (USEPA),  PPCPs “are found throughout the world in any water body influenced by wastewater, including rivers, streams, ground water, coastal marine environments, and many drinking water sources."


What is 1,4-dioxane and why are we concerned?

1,4-Dioxane is a synthetic industrial chemical used as a solvent stabilizer and purifying agent. It is also a byproduct in the manufacturing of polyethylene terephthalate (PET) plastic and is present in many household (paint strippers, dyes, and greases) and consumer products (deodorants, shampoos, and cosmetics). Short-term exposure to 1,4-dioxane may cause eye, nose and throat irritation, whereas long-term exposure may lead to kidney and liver damage. The United States Environmental Protection Agency (U.S. EPA) has classified 1,4-dioxane as a likely carcinogen by all routes of exposure. The U.S. EPA’s risk assessment indicates that the drinking water concentration representing one-in-a-million-cancer risk level for 1,4-dioxane is 0.35 part-per-billion (ppb) (assuming a 70-kg adult who consumes 2-L of water a day at that level for life). It is a widespread drinking water contaminant and is not efficiently removed by conventional water treatment methods such carbon filtration and air-stripping.


What are the sources of 1,4-dioxane in Long Island groundwater?

Legacy contamination sites (EPA Superfund sites) are the primary source of 1,4-dioxane to Long Island (LI) groundwater. However, since a large number of household products also contain 1,4-dioxane, residential wastewater discharged into septic tanks or cesspools may additionally contribute 1,4-dioxane to LI groundwater.


What are per- and polyfluoroalkyl substances (PFAS) and why are we concerned?

Per- and poly fluoro alkyl substances (PFAS) are a large group of man-made chemicals that are widely used in commercial products for more than 60 years. PFAS can resist heat, oil, stains, grease and water, and are used as coatings on clothing, carpets, furnishing, non-stick cookware, take-out fast food containers, and in fire-fighting foam. PFAS are highly persistent in the environment and have been associated with reproductive toxicity, reduced growth metrics in newborns, immunotoxicity and elevated cholesterol levels in humans. They are also associated with cancer. They are a widespread drinking water contaminant across the U.S.   


Do we have regulations for 1,4-dioxane and PFAS in drinking water?

There are NO federal regulations for 1,4-dioxane and PFAS in drinking water. Several states have established their own drinking water and groundwater guidelines/action levels for 1,4-dioxane and PFAS. In New York State, the proposed drinking water standard for 1,4-dioxane is 1 ppb (part-per-billion) and for two PFAS (PFOA and PFOS) is 10 ppt (parts-per-trillion).


What are Advanced Oxidation Processes (AOPs)?

Advanced Oxidation Processes (AOPs) are a set of highly efficient chemical treatment methods designed to enhance the removal of many persistent organic contaminants (e.g., pesticides, 1,4-dioxane) that are resistant to conventional water treatment methods. AOPs rely on the production of highly reactive chemical species (e.g. hydroxyl radicals) to breakdown contaminants and convert them into water, carbon dioxide, salts, and mineral acids. AOPs come in several configurations: ultra-violet and hydrogen peroxide (UV/H 2O 2), UV and titanium dioxide (UV/TiO 2), UV/chlorine, UV and ozone (UV/O 3), O 3/H 2O 2, etc. AOPs are increasingly being installed across NYS to remove 1,4-dioxane from drinking water.


What is Granular Activated Carbon (GAC)?

Granular activated carbon (GAC) is a specially prepared carbon (or charcoal) material (e.g. from wood, peat, or coal) that features very high surface area. They are extensively used as a purification agent. GAC filters are employed for water treatment as they are capable of attracting and removing many organic contaminants in water, including some PFAS (e.g. PFOA and PFOS). 


What is an MCL?

Maximum Contaminant Levels (MCL) are the maximum levels allowed for a contaminant in water which is delivered to any user of a public water system. MCLs are legally enforced.


What can I do to help?

You can help to keep unused pharmaceuticals out of the water supply by paying attention to how you dispose of unused medications. There is no way to completely eliminate the use of pharmaceuticals and personal care products; however when you do use them follow directions and use them sparingly to reduce the amount that goes unused and eventually ends up in the environment.  Do not flush prescription drugs down the toilet or drain unless the label or accompanying patient information specifically instructs you to do so.  Make a donation today to help support the research efforts of the Center and develop a solution to the region's water quality concerns.