HHM

Medical Molecular Biology

HHM 500: Fundamentals of Molecular Biology Techniques

Covers main techniques used in molecular biology, including direct and amplified nucleic acid-based methods. Emphasizes basic principles behind each test, interpretation of results, advantages and limitations of each methods, and type of specimen required for each test. Addresses the importance of quality control, biosafety and proper decontamination procedures to ensure accurate data for proper patient diagnosis.

3 credits,

HHM 510: Advanced Molecular Biology Laboratory

This 15-week laboratory course consists of a 6-hour weekly lab, during which the students perform hands-on activities covering the main molecular biology techniques used for the diagnosis of infectious and genetic diseases, determination of cancer markers, and forensic testing. Techniques include nucleic acid isolation, purification and quantification, DNA separation, amplification and sequencing. Prerequisite: HHM 500

3 credits,

HHM 511: Application of Molecular Biology in Diagnostics

Introduces the applications of molecular biology techniques in diagnostics of various diseases. The students will learn the molecular mechanisms underlying infection by microorganisms, genetically inherited diseases as well as cancer, and how molecular techniques can help with the diagnosis and prognosis of these diseases. Addresses the advantages and limitations of different techniques available, as well as the importance of quality control. Prerequisite: HHM 500 3 credits,

HHM 516: Application of Molecular Biology in Research

Focuses on various applications of molecular biology techniques in both basic and translational medical research. High emphasis will be placed on the understanding of the molecular pathways involved in various diseases, including cancer, genetically inherited diseases and infection by microorganisms. The students will learn how the power of molecular genetic analysis is used to identify, isolate and characterize genes that cause and contribute to the etiology of human diseases. Explains how various molecular

biology techniques can be applied to diagnose diseases and to develop potential therapeutics. Discusses the advantages and limitations of different techniques, as well as the importance of quality control. Prerequisite: HHM 500, 510, 511

3 credits,

HHM 520: Flow Cytometry Laboratory

This laboratory course consists of 30 hours of hands-on activities, and covers the main techniques used in the flow cytometry laboratory. This laboratory will be given once weekly, on weekends or weeknights. Students will perform numerous immunophenotyping techniques, including stem cell quantitation, hematologic and non-hematologic neoplasms, minimal residual disease, fetal hemoglobin and cell functional assays. Students will learn how to do quality assurance and instrumentation maintenance, and will gain hands-on experience with the application software used by flow cytometers. Prerequisite: HHM 500, 510, 511 Co-requisite: HHM 521

1 credit,

HHM 521: Flow Cytometry Methods and Applications

Introduces students to the applications of flow cytometry techniques and their applications in the diagnosis and prognosis of human diseases including leukemia and lymphoma, primary immunodeficiency diseases, Human Immunodeficiency Virus (HIV) infection detection of paroxysmal nocturnal hemoglobinuria, cytometry clinical transplantation, leukocyte functional assays, cell apoptosis, CD34 positive stem cell enumeration, immunologic dysfunction, and DNA and cell proliferation measurements in cancer cells. Prerequisite: HHM 500, 510, 511 Co-Requisite: HHM 520

2 credits,

HHM 531: Cytogenetics Methodology and Applications

Focuses on the impact of chromosome abnormalities on the diagnosis, prognosis and treatment of cytogenetic syndromes. Covers basic cytogenetic concepts and laboratory techniques required for the detection of various diseases, including sex chromosome abnormalities, the fragile X syndrome, and structural and numerical chromosome abnormalities, with special emphasis on the mechanisms underlying these syndromes. Prerequisite: HHM 500, 510, 511, 516, 520, 521, 540, 545

2 credits,

HHM 540: Laboratory Operations in Molecular Biology

Covers the main principles of laboratory standards used in the molecular diagnostics, including pre- and post-analytical operations, test result documentation, quality assurance and quality control. Considers the importance of safety, regulation and standards. Prerequisite: HHM 500, 510, 511, 516, 520, 521

2 credits,

HHM 545: Ethics in the Laboratory

Reviews professional guidelines for ethical conduct and approaches to ethical dilemmas for laboratory scientists. Explores ethical issues, including responsible research conduct, good laboratory practice, and research with human subjects. Discusses ethical principles in genetics and genetic engineering; advance directives, confidentiality, informed consent, patient rights, and Health Insurance Portability and Accountability Act of 1996 (HIPAA). All aspects of this class will be presented and discussed via a distance learning format using Blackboard. Prerequisite: HHM 500, 510, 511, 516, 520, 521

2 credits,

HHM 551: Research Methods and Scientific Writing

Introduces students to the basic concepts of biomedical research. Emphasizes critical evaluation of published scientific literature, and how to plan, design and conduct a research study. Presents the proper use of the different statistical methods required to analyze research data. Teaches students how to communicate effectively as scientists by writing high quality scientific papers, giving oral presentations, and putting together a research proposal. The students will apply these concepts to their own writing. Prerequisite: HHM 500, 510, 511, 516, 520, 521, 540, 545

3 credits,

HHM 570: Journal Club on Medical Molecular Biology

Students participate in critical analysis of scientific journal articles from a diverse set of topics related to the field of molecular biology including molecular diagnostics, molecular microbiology, cancer research, genetically inherited diseases and genomics, among others. In each session, a student presents the essential information of the paper including background, significance, hypothesis, experimental methods, results and conclusions by means of a narrated Powerpoint presentation. Following the presentation, the rest of the class discuss and analyze the content of the paper in an online discussion forum. Prerequisite: HHM 500, 510, 511, 516, 520, 521, 540, 545

1 credit,

HHM 581: Clinical Practicum in Molecular Diagnostics

This is a two week fulltime practicum in a Clinical Molecular Diagnostics lab designed to give students supervised practical application of what was learned in classes. The students will be provided with on-the-job training while experiencing the work environment in a clinical diagnostic laboratory. Prerequisite: HHM fall year two courses.

2 credits,

HHM 583: Clinical Practicum in Flow Cytometry

This is a two week fulltime practicum in a Clinical Flow Cytometry lab designed to give students supervised practical application of what was learned in classes. The students will be provided with on-the-job training while experiencing the work environment in a clinical diagnostic laboratory. This will be repeatable course, for additional course credits. Prerequisite: HHM fall year two courses.

2 credits,

HHM 585: Clinical Practicum in Cytogenetics

This is a two week fulltime practicum in a cytogenetics diagnostics lab designed to give students supervised practical application of what was learned in classes. The students will be provided with on-the-job training while experiencing the work environment in a clinical diagnostic laboratory. Prerequisite: HHM fall year two courses.

2 credits,

HHM 596: Capstone Project in Medical Molecular Biology

Culminating experience designed to for students to choose a topic of interest within the area of molecular diagnostics, flow cytometry, or cytogenetics and further investigate it by means of a systemic literature review. Topics can be problems identified during clinical practice or learned in classes. Students will need to develop a comprehensive proposal that will be reviewed by faculty. Prerequisite: HHM fall year two courses.

2 credits,