Materials Science and Engineering Department

Chairperson
Dilip Gersappe, Engineering Building 316, (631) 632-8499

Graduate Program Director
Michael Dudley, Engineering Building 322, (631) 632-8483

Department Administrator
Chandrani Roy, Assistant to the Chair

Graduate Program Coordinator
Jessica Armstrong, Engineering Building 314, (631) 632-8484

Department Office
Engineering Building 314, Zip 2275

Degrees Awarded
M.S. in Materials Science and Engineering; Ph.D. in Materials Science and Engineering

Web Site
https://www.stonybrook.edu/matscieng/

Application
https://graduateschool.stonybrook.edu/apply/

Materials Science and Engineering Department

The Department of Materials Science and Engineering offers graduate work leading to the Master of Science and Doctor of Philosophy degrees. The motivating philosophy of the graduate program is to provide the student with a broad synthesis of the theoretical and experimental techniques required to work with all classes of materials. Emphasis is placed on courses that unify the field in terms of fundamentals treated with sufficient depth to enable the student to make technological contributions in diverse areas of materials science and engineering. Laboratory and coursework are structured to provide programs for students who (1) are entering intensive basic research-oriented programs leading to Ph.D. or Master of Science degrees, (2) are currently employed and can complete their studies in the evening, or (3) are working in materials-related industries and integrate their work experience into their degree requirements.

Industrial Cooperative Ph.D. Program: A special extramural Ph.D. degree program is offered by the Department of Materials Science and Engineering for highly qualified individuals working in an industrial materials research area. Candidates for this program must have met the graduate coursework requirements for the Ph.D. typically by earning a master’s degree. Doctoral research is generally done at the student’s place of employment, rather than on the University campus. Contact the Department for further information.

Admission requirements of Materials Science and Engineering Program

We are excited that you are considering our Graduate Program. Admission to the Materials Science and Engineering program is based on the Graduate Program Committee’s assessment of the applicant’s aptitude for research and the compatibility of his or her interests with the active research programs and capabilities of the Department. To apply for Graduate Studies in MS and PhD in Materials Science and Engineering program at Stony Brook you must complete your online application To apply for Graduate Studies in MS and PhD in Chemical Engineering at Stony Brook you must complete your online application here. Applicants are advised to pay particular attention to their statements of purpose. Minimum requirements, in addition to those of the Graduate School, are as follows:

1. A bachelor’s degree in engineering, mathematics, physics, chemistry, or a closely related area from an accredited college or university;
2. A minimum grade average of at least a B in all courses in engineering, mathematics, and science;
3. Results of the Graduate Record Examination (GRE) general test (Waived for Fall 2022);
4. For non-native speakers of English, results of the TOEFL exam with a score is required. Please reference for minimum score requirements. Masters students that have completed a degree program from a U.S. institution may be eligible for a TOEFL waiver and need to request the waiver, please Graduate Admissions at gradadmissions@stonybrook.edu. All PhD applicants with a TA stipend whose native language is not English must demonstrate a sufficient level of English-speaking proficiency (TOEFL Speaking score) and may be required to take ESL courses based on these measures.
5. Acceptance by both the Department of Materials Science and Engineering and the Graduate School.
Application Deadlines

For Spring 2022
MS Domestic & International Application- October 15, 2021

For Fall 2022:
MS Domestic-April 15, 2022, 11:59pm
MS International-February 15, 2022, 11:59pm
PhD Domestic & International- January 15, 2022, 11:59pm.

Application Instructions

All applications must be completed online here. All additional required documents, such as, diplomas, transcripts, recommendation letters, etc. must be sent using the application portal.

You may download our Completed Application Checklist

Mail your official transcripts/certificates and diplomas to the following address:
Stony Brook University
Department of Materials Science & Chemical Engineering
Materials Science & Engineering Graduate Program
Engineering, Room 314
Attn: Graduate Program Coordinator
Stony Brook, NY 11794-2275
USA

The Graduate School application fee is $100* and is non-refundable. It is required for applicants from all countries.

Checking on the Status of your Application

Fall applications are reviewed in February. If your application file is missing anything, you will receive an e-mail from the department. Due to the high volume of applications we receive, we can’t respond to e-mails checking on status until AFTER April 10th.

Offer letters will begin to be mailed out in March. We ask that you do not send us numerous e-mails checking on the status of your application or telephone us regarding application status.

If you do NOT receive a letter of offer from us by April 10th, you should then contact us if you have any questions.

We appreciate your patience during this busy time of the year.

Financial Support

Admitted Ph.D. students are typically offered financial support in the form of teaching or research assistantships, which include full tuition. Admission into this program is very competitive, and you must have the intention of completing this program. M.S. students are typically admitted with no financial support. Information regarding tuition and other costs can be found here.

Facilities of Materials Science and Engineering Department

Research Activities

Since its inception, the Department has had a strong research component, with a major emphasis in surface science and engineering. The Department has been successful in obtaining external funding for research and currently has the highest per capita faculty funding within the University. In 2003, the Department topped the list for research funding in the College of Engineering and Applied Sciences. The Department boasts more than $4 million in external funding for 15 total full-time faculty members. The Department hosts two main interdisciplinary centers, one on Polymers and the other on Thermal Spray. These centers offer a unique and rich environment for interdisciplinary graduate research and education.

Garcia Center for Polymers at Engineered: The Polymer Center, offers an interdisciplinary program aimed at studying the molecular basis of macroscopic phenomena. With funds from industrial partners, the NSF and the Department of Energy (DOE), research is conducted on polymer dynamics, nanopatterning, thin film and interface engineering, surface modification, blends, polyelectrolytes, adhesion, block polymers, and wetting.
The Center for Thermal Spray Research: The Center for Thermal Spray Research (CTSR) conducts both applied and fundamental research on thermal spray technology, which involves melt spray formation of protective coatings and free standing forms. CTSR is a unique facility containing a vast array of industrial-level plasma and combustion spray devices. In 1999, CTSR’s research program received a significant boost through a $5 million award from the Defense Advanced Research Projects Agency (DARPA) to pursue revolutionary applications of thermal spray in electronics. Under the auspices of the Mesoscale Integrated Conformal Electronics initiative, CTSR has expanded its reach in the design, synthesis, and applications of thick film electronics and sensor materials. A new laboratory for both electronics fabrication and characterization has been set up.

Recent awards made to the faculty include two NSF Nanoscale Integrated Research Team awards (totaling $2 million), one concerning the use of metal oxide electronic noses for use as molecular and biological sensors, and the other concerning molecular electronics on the nanoscale.

The proximity to Brookhaven National Laboratory (BNL) and its advanced national facilities has been a major benefit to both faculty and students within the Department. Several faculty members hold guest appointments at BNL, while Brookhaven scientists participate in research and teaching within the Department. The DOE awarded the contract to manage BNL in 1998 to Brookhaven Science Associates, a consortium of other universities led by Stony Brook and the Battelle Memorial Institute. The University’s relationship with this premier research facility greatly enhances both the Department’s and Stony Brook’s research programs.

At BNL, the facilities available to the Department include particle accelerators for carrying out ion beam surface modification experiments and highly sophisticated surface analysis probes. The National Synchrotron Light Source (NSLS) is also located at BNL. As one of the participating research teams at NSLS, the Synchrotron Topography Research Group, centered in Stony Brook’s Department of Materials Science and Engineering, is using special X-ray methods to image nondestructively dislocation microstructures. This enables image-detailed descriptions of dislocation motion and structures attendant to crystal growth and plastic deformation and fracture, as well as to interesting materials behaviors. The topographic method is also being used in department-based studies of surface chemical reactivity. The Department recently was awarded a $1 million NSF Major Research Instrumentation grant to set up a center for crystal growth. The center is focused on developing capabilities for tackling the most challenging problems in crystal growth of novel advanced materials, and currently includes a high-pressure, high temperature furnace for crystal growth of III-nitrides from solution-melts, a low-temperature CVD reactor for deposition of ZnO films, a two-zone high temperature resistance-heater furnace for sublimation growth of ZnO, and a high-temperature RF reactor for SiC sublimation growth.

As a result of the University’s Engineering 2000 initiative, our ties with industry are growing stronger: faculty members are working with industry on joint research projects and submitting cooperative proposals to outside agencies. The Materials Science Department has led the effort in joint industry-University projects within the College of Engineering through the New York State Strategic Partnership for Industrial Resurgence (SPIR) program.

SPIR

Stony Brook’s own facilities include state-of-the-art low-energy electron diffraction LEED; a state-of-the-art scanning electron microscope and a transmission electron microscope, both equipped with analytical capabilities and the latest software for electron diffraction simulation and image processing; an atomic force microscope; and electron spectroscopy for chemical analysis (ESCA). IAES/SIMS Infrared Microscopy units, as well as central characterization facilities that include equipment for microanalysis and X-ray techniques. A well-equipped materials fabrication and processing facility within the department boasts a collection of furnaces capable of reaching 3,000ºC in controlled atmospheres or under vacuum, a resist-spinner, ellipsometer, contact angle goniometers, and a high-resolution Nomarsky metallurgical microscope with image processing capability.

The analytical electron facility of the Department consists of both scanning and transmission electron microscopes. The state-of-the-art Schottky Field Emission Scanning Electron Microscope (SEM) (LEO Gemini 1550) includes an In-Lens Secondary Electron Detector in addition to the standard E-T detector, and a Rutherford Backscatter Electron Detector. This SEM allows for high resolution imaging of the surfaces and cross sections of all types of solid materials. It is also fully equipped with an EDS (energy dispersive X-ray spectroscopy) system using an EDAX detector that provides elemental compositions and X-ray maps of the various phases of the materials examined. Finally, the SEM includes an Electron-Backscattered Electron Diffraction (EBED) analysis system based on the TSL/EDAX orientation imaging and Phase-ID software that allows for nondestructive diffraction analysis and orientation imaging (texture analysis) of the grain structure of the surface of the specimens tested.

This facility also includes a digitally controlled Transmission Electron Microscope (Philips CM12), complete with EDS and PEELS (Parallel reading Electron Energy Loss Spectroscopy) facilities for detailed analytical studies. This tool allows for the direct observation of the “internal” structure of materials at resolutions as low as a few Å and for the determination of the crystal structure of their various components.

There are also facilities for sample preparation for electron microscopy and microanalysis observations, including precision ion milling units (such as VCR Group XLA 2000).

Furthermore, advanced software for electron diffraction patterns simulation and image processing is available (e.g., Desktop Microscopist and Digital Micrograph).

Another research area that is emerging in the Department includes the development and testing of chemical sensors. A gas sensor testing facility is being set up in the Department, and it will be available shortly.

Other surface-related research involves studies of surface/environmental interactions. Using unique combinations of electron and ion spectroscopies, infrared and optical microspectroscopy and synchrotron based techniques; research is being conducted into corrosion behavior and corrosion inhibition of engineering alloys, degradation of paints and other coatings, remediation of contaminated surfaces, and surface cleaning. Much of this work has included collaborations with other universities, industries, national laboratories, and government facilities such.
as the Army Research Laboratory, Weapons and Materials Directorate (Aberdeen, MD). An evolving area of collaborative research involves related studies of unique thin films and structures formed using femtosecond laser ablation. The structure of epitaxial surface monolayers is being studied using LEED; extension of this research is also performed at the NSLS. The preparation of thin films of magnetic metals is studied using ultrahigh-vacuum (UHV) molecular beam epitaxy (MBE) processing. These materials are used in the computer industry in disk storage devices. The magnetic properties of these materials are studied using a vibrating sample magnetometer (VSM) and magneto-optic Kerr effect (MOKE) spectroscopy. Research is also being performed on the chemical makeup of the newly discovered high-temperature superconductors. Novel methods of rapidly spraying such materials onto surfaces are being developed. Through a Department of Defense instrumentation program, a comprehensive thermal analysis and porosity laboratory has been set up within the Department.

Consistent with Stony Brook’s designated mission as a research center, the cornerstone of the Department’s academic program is the graduate work leading to the research-oriented M.S. and Ph.D. degrees. The Department has about 100 full-time, fully supported students and as many as 5 part-time students, most of who work in Long Island’s high-technology industries.

Requirements for the M.S. Degree in Materials Science and Engineering

In addition to the minimum requirements of the Graduate School, the requirements for the M.S. degree in the Department of Materials Science and Engineering can be satisfied by either one of the two following options:

M.S. Non-Thesis Option

A. Election
The election of this option must be made by the student upon admission to the program and is considered a terminal degree.

B. Coursework
1. A minimum of 30 graduate credits with a grade point average of 3.0 or better in all graduate courses taken is required to graduate. All credits must be from coursework.

2. The 30 credits must include the following three core courses: ESM 511 Thermodynamics of Solids; ESM 513 Strength of Materials; and ESM 521 Diffusion in Solids.

3. Only six credits of ESM 696 Special Problems in Materials Science are allowed. Additional ESM 696 credits require permission of the Graduate Program Director.

4. All courses taken outside the Department require permission from the Graduate Program Director.

M.S. Thesis Option

A. Election
The election of this option must be made by the student upon admission to the program and is normally considered part of the Ph.D. sequence. Students may not transfer to the Non-Thesis Option while registered for a Thesis Master’s or a Ph.D. degree.

B. Coursework
1. A minimum of 30 graduate credits is required to graduate; 24 credits must be from coursework.

2. The 30 credits must include the following three core courses: ESM 511 Thermodynamics of Solids; ESM 513 Strength of Materials; and ESM 521 Diffusion in Solids.

3. The 30 credits must include six credits of ESM 599 Research.

4. Only six credits of ESM 696 Special Problems in Materials Science are allowed. Additional ESM 696 credits require permission of the Graduate Program Director.

5. All courses taken outside the Department require permission from the Graduate Program Director.

C. Thesis
For the student who elects to complete a thesis for the M.S. degree, the thesis must be approved by three faculty members, at least two of whom are members of the Department of Materials Science and Engineering, including the research advisor.

D. Final Recommendation
Upon fulfillment of the above requirements, the Graduate Program Committee will recommend to the Dean of the Graduate School that the Master of Science degree be conferred or will stipulate further requirements that the student must fulfill.

E. Transfer to Other Options
Transfer to another degree option in the Department can be made only with the written permission of the Graduate Program Director.

Requirements for the Ph.D. Degree in Materials Science and Engineering

A. Plan of Work
Before completion of one year of full-time residency, the student must have selected a research advisor who agrees to serve in that capacity. The student will then prepare a plan of further coursework. This must receive the approval of the student’s advisor and of the Graduate Program Committee.

B. Coursework

1. An average grade of B or higher is required for all courses.

2. A minimum of 24 graduate course credits is required to graduate (excluding ESM 501, ESM 514, ESM 599, ESM 697, ESM 698, and ESM 699).

3. The 24 course credits must include the following three core courses: ESM 511 Thermodynamics of Solids; ESM 513 Strength of Materials; and ESM 521 Diffusion in Solids. If the student does not receive a minimum of a B in a core course, he or she may repeat that course one other time.

4. All students must complete ESM 501 Teaching and Mentoring Techniques and ESM 514, Technical Writing for Scientist. These 2 courses do not count towards the 24 graduate course credits required.

5. The student must pass at least three credits of ESM 698 Practicum in Teaching and six credits of ESM 699 Dissertation Research on Campus.

6. Only six credits of ESM 696 Special Problems in Materials Science are allowed. Additional ESM 696 credits require permission of the Graduate Program Director.

7. All courses taken outside the Department require permission from the Graduate Program Director.

8. All PhD students must act as teaching assistants for five semesters (regardless of support), and they must register for ESM 698 Practicum in Teaching in all five semesters for a total of 3 credits and 0 credits for the rest.

C. Preliminary Examination

The preliminary examination must be taken before the beginning of the student’s fifth semester. This is an oral examination designed to test the student’s ability to utilize his or her materials science background to carry out research in a chosen field of study, and to make clear written and oral presentations of research. At least ten days prior to the examination, the candidate should submit a research proposal (10-15 pages) to the examiners that places the research in context and outlines a scenario for its completion. The student must have finished the required coursework for the PhD program prior to taking the oral exam.

The examination committee will consist of three(3) Materials Science and Engineering Department faculty members. If a second examination is required, it must be completed by the tenth week of the sixth semester.

D. Advancement to Candidacy

After the prelims, the department processes the Advancement to Candidacy once the student’s preliminary examination committee has signed to confirm that the student has passed the prelims. It is important to note, that a student must have no “I” or “U” grades for courses that count towards the degree to advance to candidacy. He/she must have completed all coursework requirements to advance to candidacy.

E. Dissertation

The most important requirement of the Ph.D. degree is the completion of a dissertation, which must be an original scholarly investigation. The dissertation shall represent a significant contribution to the scientific literature, and its quality shall be compatible with the publication standards of appropriate and reputable scholarly journals. At least two semesters should elapse between the preliminary exam and submission of the dissertation.

F. Defense

The candidate shall defend the dissertation before an examining committee consisting of four members, including the research advisor, two members of the Materials Science and Engineering Department, and one member from outside the Department.

G. Time Limit

All requirements for the Ph.D. degree must be completed within seven years after completing 24 graduate course credits and other requirements as needed to complete the program.

Requirements for the Bachelor of Science Degree/Master of Science Degree Accelerated Program

The Accelerated BE/MS program is designed to allow undergraduate students in Engineering Science (ESG), Engineering Chemistry (ECM), and Physics (PHY) majors, in good academic standing with a GPA of 3.0 and above, to apply at the end of their junior year for admission to this special program, which leads to a Bachelor of Engineering or Bachelor of Science degree at the end of the fourth year and a Master of Science degree at the end of the fifth year. This is achieved by allowing undergraduate students in the program to take up to two graduate courses as their undergraduate technical electives. These graduate courses will also be counted towards their Master's degree. According to Graduate School policy, up to 6 credits taken as an undergraduate senior student may be counted for both degrees. As a result, students can complete both degrees in five years (i.e., just one extra year or two semesters for the MS).

Engineering Science students in the junior undergraduate year take ESM 455, which is normally taken in the senior year, instead of ESM 335. In the senior year, a student takes ESM 513, to use in lieu of ESM 335, in the fall and another graduate course in the spring. For details of the B.E./M.S. program, please see the graduate program coordinator in the department.
Students are not allowed to enroll in ESM 513 if they have already taken ESM 335. Then that student will be required to replace ESM 513 with another ESM course to fulfill the requirement to complete the PhD program.

Requirements for Application

1. Applicant must be an Engineering Science (ESG) or Engineering Chemistry (ECM) or Physics (PHY) major with a cumulative undergraduate GPA of at least 3.00 at the time of application in their junior year.
2. Students are encouraged to apply to the five-year program by the end of the spring semester of their junior year.
3. 3.0 GPA must be maintained to begin the student’s graduate career in the 5th year of the accelerated program.
4. Please contact the department at ESMandCM_GradAdmissions@stonybrook.edu to apply to the program.

Applications are reviewed by the ESM Graduate Program Committee and students are generally accepted by the beginning of their senior undergraduate year and are then notified if they have been admitted to the Accelerated Program. The BE/MS is a sequential degree program. Students in the Accelerated Bachelor's/Master's program typically matriculate to the graduate career at the beginning of their third semester. Students must have a cumulative GPA of 3.0 or higher to be admitted to the Graduate School. The Master's in Materials Science and Engineering is a 30 credit program and 24 of those credits must be earned as a matriculated graduate student.

Applicants interested in a graduate degree who do not meet these criteria are encouraged to apply directly to the M.S. program in their senior year.

As an undergraduate, students will be charged tuition at the undergraduate rate for both graduate and undergraduate courses. Once the graduate career begins in the 5th year of the program, the student will be subject to graduate tuition, fees and Graduate School regulations. Students will be permitted to live in Graduate Housing however they will no longer be eligible for Undergraduate Financial Aid.

Students who transfer to Stony Brook must complete at least one semester at Stony Brook before they will be considered for admission to the five-year BE-BS/MS program and decisions will be made on a case-by-case basis to ensure they meet all other requirements to qualify for the combined degree program.

Transfer of credits into M.S. or Ph.D. programs

Students may transfer up to 9 credits of graduate courses obtained from another US accredited university. The following conditions and procedure is required to transfer any credits.

In order to be counted towards graduation, the credits must be evaluated by Materials Science Graduate Program committee and faculty. The evaluation must establish equivalence between a course being transferred from another institution and an ESM course in Stony Brook, which is accepted as part of the graduation requirements. The faculty member must be one of those who are teaching the corresponding graduate course on a regular basis. The professor typically evaluates the course materials/contents, student transcripts, etc. The approval is not automatic and we generally take a very careful look at such transfer requests.

Graduate courses that do not meet the previous requirement can be transferred without being counted towards graduation. This can sometimes be useful because students who have earned 24 graduate credits of any kind need to be registered for only 9 credits (instead of 12) in order to have full status. Therefore, gaining this status early might reduce tuition liability.

M.S. to Ph.D

A student in the M.S. program from ESM or any related field at Stony Brook can subsequently apply for admission into the Ph.D. program, only if the student can be supported by an advisor to complete the PhD program in ESM at Stony Brook. Student will require to complete a change of level/program form and will enter the PhD program as a G-4 student.

The ESM Ph.D. program also recognizes M.S. degree from other accredited US institutions, person that has M.S. degree in CME will still require to complete courses totaling 24 credits. The student will be accepted as G4 level student and expected to complete all requirements towards the Ph.D. degree.

Faculty of Materials Science and Chemical Engineering Department

Materials Science & Engineering Program

Distinguished Professors

Herman, Herbert, Emeritus, Ph.D., 1961, Northwestern University: Protective coatings; thermal spray; composites; marine materials.

Rafailovich, Miriam, Ph.D., 1980, Stony Brook University: Polymeric liquids; phase transitions; thin film wetting phenomena; atomic force microscopy; ion, X-ray, and neutron scattering.

Sampath, Sanjay, Ph.D., 1989, Stony Brook University: Thermal spraying; protective coatings; functioning graded materials; thick film electronics and sensors.

Professors
Clayton, Clive R., Ph.D., 1976, Surrey University, England: Environmental degradation of materials; XPS; AES; dynamic and static SIMS; electrochemical analysis synthesis by ultra-fast laser ablation; RHEED; protective coatings.

Dudley, Michael, Ph.D., 1982, University of Warwick, England: Synchrotron topography; crystal defects; mechanical properties.

Frenkel, Anatoly., PhD 1995, Tel Aviv University, Application of synchrotron measurements in materials, Structure-property-function relationships in applied nanomaterials, catalysis

Gersappe, Dilip., Interim Chairperson, Ph.D., 1992, Northwestern University: Polymer theory and simulation, Modeling of complex fluids and electrochemical processes

Orlov, Alexander, Ph.D., 2005, University of Cambridge, UK, Physical Chemistry: M.Phil. Chemistry University of Cambridge, UK; M.S.E. Engineering, University of Michigan, USA; M.E./B.E. Engineering, National Technical University, Ukraine. Materials for environmental applications; physical chemistry, environmental nanotechnology and photocatalysis

Sokolov, Jonathan C., ESM Graduate Program Director, Ph.D., 1983, Stony Brook University: Surface and interface properties of polymers and blends; phase transitions; neutron and X-ray scattering; EXAFS; SIMS.

Associate Professors

Halada, Gary, Ph.D., 1993, Stony Brook University: Electron spectroscopy; electrochemistry; surface engineering; optical spectroscopy; environmental remediation.

Trelewicz, Jason, Ph.D., 2008, M.I.T.; thermodynamic and mechanical properties of binary nanocrystalline alloys by implementing a combination of analytical theory and experimental mechanics

Venkatesh, T.A., Ph.D., 1998, Massachusetts Institute of Technology: Nanomaterials, Smart Materials, Materials for MEMS and biomedical applications

Assistant Professors

Chen-Wiegart, Karen, PhD, 2011, Northwestern University, x-ray imaging and spectroscopic techniques to study novel functional materials. Energy storage and conversion, nano-/meso-porous materials, thin film & surface treatment

Crossover with Chemical Engineering

Professors

Mahajan, Devinder, CME Graduate Program Director, Ph.D., 1979, University of British Columbia: Inorganic chemistry; fuel cells; catalysis.

Tannenbaum, Irena, PhD 1982, ETH Zurich: Polymers, Biomaterials, nanotechnology and nanomedicine.

Associate Professors

Kim, Tacljin, PhD, 2007, Lehigh University, Catalysis and Reaction Engineering, Operando methods of characterizing catalytic reactions, biomass conversion to fuels and chemicals

Koga, Tadanori, Ph.D., 1998, Kyushu University, Japan, Physics: green nanofabrication of polymer thin films; chemical recycling of waste plastics and methane hydrate as a future energy resource

Assistant Professors

Rajput, Nav Nidhi, Assistant Professor, Ph.D., Louisiana State University (2013). Research: Molecular dynamics studies of ionic liquids, Nanoporous materials; Electrochemistry

Lecturers

Meng, Yizhi, PhD, 2003, Cornell University, Food Engineering

Nitodas, Steve PhD, 2001, University of Rochester, Materials Science & Chemical Engineering, Kinetic Investigation and Modeling of the Chemical Vapor Deposition of Aluminum Oxide, Silicon Oxide and Aluminosilicates from Mixtures of Metal Chlorides, Carbon Dioxide, and Hydrogen

Research Professor

Koga, Maya Ph.D. 2005, Kyoto University, Japan, Polymer Physics.

Marshilok, Amy, University of Buffalo, Energy storage and electrochemical transport. New material and electrode concepts for high power, high energy density, extended life primary and secondary batteries

Snead, Lance, Ph.D., 1992, Rensselaer Polytechnic Institute, Nuclear Engineering

Stony Brook University Graduate Bulletin: www.stonybrook.edu/gradbulletin
Kwon, Gihan, Ph.D., 2009, University of Alabama, Chemical & Biological Engineering

Lee, Wilson, Ph.D., 2007, Stony Brook University, Materials Science, Cosmetics Research and Development

Li, Qiang, Ph. D., 1991, Iowa State University at Ames: Energy and electronic materials; synthesis and characterization.

Lindberg, Jake C., Ph. D., 2021, Stony Brook University, Chemical & Molecular Engineering

Liu, Mingzha, Ph.D., 2007, The University of Chicago, Chemistry; Solar water splitting; Pulsed Laser Deposition (PLD), Atomic Layer Deposition (ALD); Colloidal nanoparticle synthesis; Numerical simulation for nanophotonic/plasmonic structures.

Liu, Qun, Ph.D., 2006, Cornell University, Ithaca, NY: Biophysics, Biochemistry

Lombardi, Jack, Ph.D., 2015, Stony Brook University, Materials Science and Engineering

Lu, Deyu, Ph.D., Physics, University of Illinois at Urbana-Champaign: Empirical nanotube model: Applications to water channel and nano-oscillators.

Lu, Fang, Ph.D., 2007, Chinese Academy of Sciences: Condensed Matter Physics

May, Katherine Flynn, Ph.D, 2014, Stony Brook University, Materials Science and Engineering, Research field: Thermal Spray Formed Ceramic

Marschilok, Amy, Associate Professor, Stony Brook University; Co-Director, Institute for Energy Sustainability and Equity, Stony Brook University; Scientist and Division Manager, Brookhaven National Laboratory; Ph.D., University at Buffalo, Chemistry; Areas of Interest: Electrochemistry, Electrochemical Materials Science

Meng, Qingpeng, Ph.D, 2002, Shanghai Jiao Tong University, Materials Science and Engineering, Research field: Phase Transformation & Nanostructured Materials

Muller, Erik, Ph.D., 2005, Cornell University, Physics; Investigating the material properties of high quality synthetic diamond for use as both electron emitters and x-ray detectors

Mironava, Tatsiana, Ph.D., 2011, Stony Brook University, Materials Science, and Engineering

Nam, Chang-Yong, Ph.D., 2007, University of Pennsylvania, Materials Science and Engineering; Infiltration synthesis, with a focus on material hybridization & nanopatterning; Atomic layer deposition for oxidation catalysts; Organic & hybrid photovoltaics; Nanowire electronics; Semiconductor device physics & characterization

Neiser, Richard A, Ph.D. 1989, Stony Brook University, Materials Science, and Engineering

Okoli, Celest, Ph.D., 2018, Stony brook University, Materials Science & Chemical Engineering

Petrovic, Cedomir, Ph.D. 2000, Florida State University, Physics.

Rodriguez, Jose, Ph.D., 1988, Indiana University, Chemistry, Catalysis and Surface Science

Shah, Raj, Ph.D., 1995, Pennsylvania State University, Chemical Engineering.

Sharma, Priyanka, Ph.D., 2014, CSIR-National Chemical Laboratory, India, Material Chemistry and Nanomaterials

Sharma, Sunil, Ph.D., 2016, IIT Bombay, Mumbai, India, Material Chemistry and Nanomaterials

Singh, Gurje, Ph.D., 2012, Rensselaer Polytechnic Institute (RPI), Troy, NY; Chemical and Biological Engineering

Stach, Eric, Ph.D., 1998, Materials Science and Engineering, University of Virginia

Stacchiola, Dario, Ph.D., 2002, University of Wisconsin-Milwaukee, Physical Chemistry, Surface Science

Tan Kun, Ph.D., 2022 Stony Brook University, Chemical and Molecular Engineering

Tawfik, Hazem, P.E. and a Certified Manufacturing Engineer; Director of the Institute of Research and Technology Transfer (IRTT) at Farmingdale State College - State University of New York

Stony Brook University Graduate Bulletin: www.stonybrook.edu/gradbulletin
Uchimiya, Sophie Minori, Ph.D. 2005, Environmental Chemistry Department of Geography and Environmental Engineering: Research Chemist, USDA-ARS Southern Regional Research Center, New Orleans, LA

Veerasamy, Victor, Ph.D., 1994 University of Cambridge, England

Veerasamy, Yovana, Ph.D., 2020 University of Toledo, Administration and Policy, Internationalization Policy

Wang, Jia, Ph.D., 1987, Physical Chemistry, City University of New York: Surface Electrochemistry and Electrocatalysis

Wang, Mu, Ph.D., 1991, Physics, Nanjing University, Jiangsu, China

Weil, Edward, Ph.D., 1953, University of Illinois, Organic Chemistry

Wiegart, Lutz, Ph.D., 2007, Physics, Université Joseph Fourier (Grenoble, France), Commissariat à l’énergie atomique (CEA, Grenoble, France), European Synchrotron Radiation Facility (ESRF, Grenoble, France) and University of Dortmund (Germany)

Wu, Qin, Ph.D., 2004, Duke University, Chemistry

Xin, Huolin, Ph.D., 2011 Cornell University, Physics

Xiao, Xianghui, Ph.D., 2002, Institute of High Energy Physics, Chinese Academy of Science, China, Physics

Zhang, Zhiwei, Ph.D. 2003, Colorado School of Mines, Chemical Engineering, Reaction Kinetics and Reactor Engineering

Affiliate Faculty

Bhatia, Surita, Ph.D., 2000, Princeton University

Takeuchi, Kenneth, Ph.D. Ohio State University

NOTE: The course descriptions for this program can be found in the corresponding program PDF or at COURSE SEARCH.