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Obtaining multifunctionality from microstructures instead of constituents provides a new direction for devel-
oping multifunctional materials. Periodic hollow sphere foams (HSFs) offer one lightweight structural motif with
open and closed cells, high energy absorption, low thermal conductivity, snap-through instability, and triple-
negative material indices. Here, we investigate the direction-dependent mechanical property, instability, and
elastic wave isolation behavior of HSFs. Explicit formulas, stereographic projections, and general scaling re-
lationships are developed to quantify and visualize the anisotropic mechanical properties of HSFs. By investi-
gating the directional wave propagation in HSFs, extremely wide phononic band gaps are identified in the HSFs.
The derived formulas and the simulation-informed parametric maps allow the design of HSFs with desired static
and dynamic anisotropic property profiles, including tailorable direction-dependent stiffness/shear modulus,
negative Poisson’s ratio, and wave isolation properties. Building upon these results, multifunctional design
concepts of HSFs are further set forth. This study not only reveals tailorable mechanical anisotropy and band gap
in HSFs, but also develops a general approach to investigate the direction-dependent properties of periodic
materials, enabling multifunctional applications where lightweight, direction-dependent property, wave atten-
uation, and programmability are required simultaneously.

1. Introduction

Architected materials provide one approach to achieve multi-
functionality by designing the material microstructure [1-6]. In recent
decades, architected lattice materials have been shown to achieve
remarkable mechanical, thermal, and acoustic properties, arising from
their periodic microstructures [1,7-11]. By tailoring the unit cell ge-
ometry, lattice materials have been designed successfully to achieve
property combinations that break performance tradeoffs [12,13],
improve thermal and mechanical performance [14-16], produce nega-
tive material indices [17,18], acquire piezoelectric energy harvesting
functionalities [19,20], and many others. Developing lattice materials
with multiple of the above functions is highly in need. In this study, we
propose periodic hollow sphere foam (HSF) as a lightweight material
structural motif for multifunctionality.

HSF is a class of cellular lattice material that exhibits low density,
large void space, and large specific surface area [21,22] (Fig. 1). It has
both open and closed cells, which thus offers the advantages of open and
closed cell foams simultaneously, including large surface area, enhanced
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stiffness, lower thermal conductivity, and buoyancy. In the past, random
HSFs have been widely used in energy absorption [23], thermal man-
agement [24], fluid permeability control [25], and pressure sensors
[26]. Filling metallic tubes with hollow spheres has been shown as an
efficient way to improve the axial crushing strength of the tube; binding
these hollow spheres can improve the crash-worthiness even further
[27,28].

Recent advances in synthesis have enabled the assembly of hollow
spheres into periodic foams with binding [29], sintering [30], and self-
assembling processes [31,32]. Such periodic HSF lattices have well-
defined material architecture and enable functions beyond that of
traditional random foams. For example, the mechanical and thermal
properties of periodic HSFs can be tailored by designing geometric pa-
rameters [15,33]. Periodic structures also give rise to unusual properties
like band gaps [34-36] and negative material indices [17,37,38]. Pho-
nonic crystals with complete bandgap are important to applications like
wave filters [39-42], waveguides [43-45], frequency modulators
[46,471, acoustic cloaks [48,49], and thermal insulators [50]. Recently,
by taking advantage of the snap-through instability of spherical shells,
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mechanical memory has also been devised, which enables programma-
ble modulus and strength over an order of magnitude [51]. Fig. 1 pro-
vides an overview of the functionalities and applications of HSFs.

Applications of lattice materials in research fields like scaffolds for
bone regeneration [19], substrates for tissue growth [52], multi-lattice
structures [53], and metamaterials [1] have set additional re-
quirements to designing a materials’ anisotropic properties [54]. Sim-
ulations approaches have been used to plot the anisotropic modulus map
of periodic lattices and composites [55,56]. It has been shown that truss-
based lattice materials often exhibit high mechanical anisotropy;
introducing redundant trusses and combining different lattices types
provides one efficient way to adjust anisotropy and to achieve quasi-
isotropic properties [54]; designing the structural morphology pro-
vides an alternative approach to tune anisotropy [57]. Moreover, in
addition to static mechanical properties, the wave propagation proper-
ties of lattice materials are also direction dependent — waves of certain
frequencies are often allowed to propagate in some directions but not in
others [58].

In this study, we investigate the direction-dependent elastic and
wave propagation properties of HSFs, aiming to introduce new func-
tionalities to the functional library of HSFs (Fig. 1). Specifically, we first
propose explicit formulas and adapt the stereographic projection
method in crystallography to study the direction-dependent properties
of lattice materials. Combining with numerical simulations, the aniso-
tropic mechanical properties of HSFs arranged in simple cubic (SC),
body-centered cubic (BCC), and face-centered cubic (FCC) lattices are
studied systematically. Universal scaling equations are proposed to
describe the elastic constants of HSFs and guide their quantitative
design. The direction-dependent wave propagation properties in HSFs
are further inspected. Finally, based on the direction-dependent prop-
erties shown herein, concept designs of HSFs as tailorable, adaptive, and
programmable multifunctional materials are demonstrated.

2. Materials and methods
2.1. Structural description of the hollow sphere foams

As depicted in Fig. 1(a), HSFs are a periodic assembly of spherical
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shells connected by binders. The geometry of the HSFs is defined by four
parameters, the radius of the hollow sphere, R, the thickness of the
hollow sphere, t, the radius of the binder, r,, and the height of the binder,
h. Here, we limit the arrangement of hollow spheres to be cubic sym-
metric, i.e., in SC, BCC, and FCC lattices. The corresponding unit cells
are shown in Fig. 2. As the unit cells consist of shells and binders, a first-
order estimation of the volume occupied by HSF in a unit cell is
n-4zR%*t + m-zrih, with n and m depict the numbers of shells and the
numbers of binders in a unit cell, respectively. The total volume of the
unit cell is proportional to R3, so, the volume fraction of HSF can be
evaluated as

V; = At/R+B(r,/R)’h/R, @

where A and B are scaling constants that depend on the lattice type.
When the binders are relatively small (r, —» 0 or h — 0), the volume
fraction VyxAt/R, and the relative density of HSF is proportional to the
relative shell thickness (t/R).

2.2. Mechanical simulation

Finite element simulations are carried out to obtain the elastic con-
stants of the HSFs. For cubic materials, the elastic tensor is defined by
three elastic constants, namely, Young’s modulus E;;, Poisson’s ratio
V12, and shear modulus G». In the simulation,E1; and v15 are evaluated
by performing numerical uniaxial compression while G; is obtained by
performing numerical simple shear tests. To reduce the computational
cost, the simulations are conducted on unit cells with periodic boundary
conditions, as described in Fig. 2a [59] (see more details are in the
supplementary materials). Specifically, the unit cell is subjected to a
prescribed deformation defined by the deformation gradient F, the dis-
placements on pairs of points on the periodic boundaries are enforced to
satisfy [59,60]

u(B) —u(4) = (F - D{X(B) - X(4) } = H{X(B) — X(4) } @

where A and B are paired points located on the opposite faces of the unit
cell as illustrated in Fig. 2(a); u denotes the displacement, X denotes the
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Fig. 1. Multifunctional properties of the hollow sphere foam (HSF) enabled by microstructure. (a) The geometry of HSFs is defined by R, t, rp, and h. (b) The
multifunctionality and corresponding applications of HSFs. The SEM image in (a) is reproduced with permission from Ref. [32]. Copyright 2012 American Chemical
Society. The image panels of airplane and space capsule in (b) are acquired from open online resources.
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Fig. 2. (a) The unit cells and (b) the boundary conditions used to simulate the elastic properties of HSFs.

position in the reference configuration, and H = F-I is the macroscopic
displacement gradient tensor. Simulation is conducted in ABAQUS. Hs,3
is implemented by three reference nodes and the components of Hz,3
are assigned based on the loading condition. For uniaxial compression in
the x-direction, Hj; is assigned as the applied compressive strain (0.05
for evaluating elastic constants) while all the diagonal components of H
are assigned to be zero. A representative mesh used in the simulation is
shown in Fig. S1.

Based on the macroscopic response of the unit cell calculated from
ABAQUS, Eji, 112, and Gpp are calculated accordingly. Because the
hollow spheres have thin features, their local strain is small under a
compressive strain up to 0.13. Moreover, as the anisotropic elastic
constants are defined by the small deformation regime of the HSF,
elastic material models are used in the simulations. The material prop-
erties used in the simulation are Ep/Es = 0.04, v, = 0.4 andy; = 0.3,
representing aluminum or glass hollow spheres (E; = 70 GPa) connected
by polymetric binders (E; = 2.8 GPa). The geometric parameters are t/R

@ x (b) %

Direction j

X

=0.03,1,/R =0.2, h/R = 0.02 unless otherwise specified. The subscripts
“b” and “s” refer to the binder and shell, respectively.

2.3. Formula and approach to visualize the anisotropic elastic properties
of cubic materials

The elastic constants E;;, v13, and Gpo describe the mechanical
behavior of HSFs when loads are applied in the orthogonal directions
(x1, X2, and x3) of the reference coordinate system x[Fig. 3(a)]. To
visualize the mechanical properties of a material in arbitrary loading
directions, a spatial coordinate system (x) is introduced. Because
Young’s modulus only depends on one direction — the direction of the
load, thereby, its direction-dependent behavior can be visualized using a
3D elastic representative surface [Fig. 3(c)][61]. In contrast, Poisson’s
ratio (v5) and shear modulus (Gy) depend on two directions: the loading
direction i and the second lateral direction j. For a specified loading
direction i, direction j is defined perpendicular to direction i and varies
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(d) G‘I < 014 012 ‘ 034 , 011

G[”"’l'e o 159
[hk] e 2
s = 1=
122
113
23
(nkD) 12
733
334
X y

11

Polar plc;t of
'vij and G
on plane {hkl}

X Direction i

Fig. 3. Visualization of the direction-dependency of Young’'s modulus, Poisson’s ratio, and shear modulus. (a) Definition of the reference and the spatial coordinate
systems. (b) Illustration of the two directions ([hkl] and ) used to define Poisson’s ratio v; and shear modulus Gj;. (c) Elastic representative surface describes material
parameters that only depend on one direction (like Young’s modulus Ej). (d) The triangle of the stereographic projection describes material parameters that depend
on two directions (like Poisson’s ratio v and shear modulus G ). The polar plots are drawn to scale.
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in the range of [0, 27) [Fig. 3(b)]. Defining the directions i and j by [hkI]
and 0, respectively, we can generate a polar plot for each given [hkl]| as
shown in Fig. 3(b, d). We have obtained formulas to depict elastic
anisotropy previously in [33], here, we provide the detailed derivation
for the completeness of this study.

For a cubic material, symmetry requires the elastic compliance
tensor to have the following form [62],

1 1
= 8128;i6km + —S44 (St Sjm + SimSjr) + (S11 — S12 — —Saa) Air @ gy Gy 3

5 4 7

/
ijkm
/

where Sjjm and Sy, are the compliant tensor in the reference coordinate

system (x) and spatial coordinate system (x"), respectively. The notation
;;Qj:axam; follows [62], which is defined as )", 5 30:0jtQx¢@m:. The
transformation matrix, ay, has the following form,
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1 1

LI B 11
Sw  Su+A-Fu([hki], 0) (1)

G0 =

These equations show that Poisson’s ratio and shear modulus depend
not only on [hkl] but also on @. Therefore, a method different from the
elastic representative surface should be used to visualize their direction
dependency. We adapt the stereographic projection plots in crystallog-
raphy to show the anisotropy of the two direction-dependent material
parameters, Vo and G [64]. Fig. 3(d) shows examples of stereo-
graphic projections of shear modulus and Poisson’s ratio, which depict
how the shear modulus and Poisson’s ratio change as both the loading
direction [hkl] and angle 0 vary. For instance, as the loading direction
[hkl] changes from [001] to [111], the dependency of Gpye on 6
gradually decreases and finally becomes #-independent. In contrast, the
Poisson’s ratio is # -independent for both the [001] and [111] di-

h k [
VPTRF (VY NCETT
Vk* + I cosd hkcos@ Isinf hlcos@ ksinf
“TN VPR VAPV R AE VPR VR EVR+R+E JELR @
VK* + I*sind IcosO hksin@ kcos@ hlisind
VIR +F R+ e+ E i+ RAPR R+

Combining Egs. (3) and (4), S
(with the Voigt notation Sj),

s#m Can be written in a general equation

Sy = Sy +A-Fy([hkl), 6). 5)

where A = (S11 —S12 —%844) is the anisotropic parameter. Fj;([hkl], 0) are
functions of the direction vector [hkl] and rotation angle 6. The expres-
sions of Fj; are

rections but shows a two-fold symmetry for other loading directions.

In addition to a full two direction-dependent picture, the average
values of v ¢ and Gy for a certain direction [hkl] are also desired in
many scenarios. These average values can be calculated by integrating
over the angle 0 as, D[hkl] = %fgﬂ l/[hkl]‘gde and E[hkl],a = %foz” G[hkl]_gde,
which gives,

_ v12 A
Vlhkt) = E[hk[] ﬁ_k2+lz

[P+ (K + P + 1) ] } (12)

_ 272 202 | 1212 _ A
Fyo= =2(Rk>+ 2P+ Ph?), (6) 1/Gy = 1/Gis + 2{(k2+lz)4+(h2k2+lz)2+(kz+hzlz)2}
2(k2 + 1)
2
Fo=5—p [(k* + KPP + I')cos™0 + hkl (P — k*)cosOsind + k*Fsin’0 ], 13)
@ These averaged parameters only depend on the loading direction
[hkI] and can thus be shown in the elastic representative surfaces like
Young’s modulus.
4
Fi = ———— | (k& + P)*cos®0sin®0 + (Icos + hksind)* (hkcos® — Isind)” + (hicosd + ksind)® (kcosd — hlsinH)z] . ®)

@+ )

Based on Egs. (5) and (6), Young’s modulus of a cubic material in an
arbitrary direction [hkl] is derived,

1 1 1

Epg E- T Efi00)

—2A(IPK* + KPP 4 PH?). 9

Eq. (9) recovers the formula of elastic representative surface, which
has been previously derived in Refs. [61,63]. Moreover, Poisson’s ratio
and shear modulus can be expressed as,

S, Sp+AFp([hk),0)
Vo = —

= e 10
S” S“ +AF11([hkl]79)

2.4. Wave propagation calculation

The direction-dependent wave propagation properties are obtained
by calculating the dispersion relations based on primitive unit cells in
COMSOL Multiphysics. The primitive unit cells and the corresponding
irreducible Brillouin zones for HSFs with different lattice structures are
summarized in Fig. S2 [65]. The Bloch-Floquet periodic boundary con-
dition is implemented and the eigenfrequency sweep is performed along
the edges of the first irreducible Brillouin zone. In the simulation,
tetrahedra elements are used and the mesh sensitivity is verified. The
dispersion relations are obtained numerically and verified by comparing
them with the frequency-domain transmission simulations.
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Fig. 4. (a-c) Stress-strain diagram and (d-f) Poisson’s ratio-strain diagram of HSFs arranged in SC, BCC, and FCC lattices. t/R = 0.01-0.055, r,/R = 0.2, h/R = 0.02,
Ep/Es = 0.04. The subscripts 1 and 2 of 611 and v refer to the [100] and [010] directions, respectively.
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Fig. 5. The auxetic behavior of HSFs. (a) Deformation of HSFs at compressive engineering strain of 0, 0.05, and 0.1. The white arrows mark the directions of
recession. t/R = 0.03, r,/R = 0.2, Ep/E; = 0.04. (b) Poisson’s ratio vs contact stiffness ratio (A = k¢/k,) for spherical shells with different arrangements.

3. Results and discussion compression. Fig. 4(a-c) summarizes the normalized stress—strain equi-
librium paths of HSFs with SC, BCC, and FCC lattices when compressed

3.1. The elastic constants of HSFs loaded in [100] direction in the [1 00] direction. It is shown that the HSFs with SC and BCC lattices
present the typical compressive response of cellular materials, which are

We start by investigating the mechanical properties of HSFs under featured by three stages — the linear elastic regime, the stable



Z. Jia et al.

deformation plateau, and the post-contact strain hardening regime [7].
Such a three-stage behavior renders the HSF material an impressive
energy absorption capability. Notably, some of the BCC HSFs exhibit
negative incremental stiffness due to the snap-through behavior [Fig. 4
(b)]. More impressively, snap-back is observed in the BCC HSF with t/R
~ 0.035, which theoretically leads to an incremental stiffness
approaching negative infinity under displacement-controlled loading
(marked by black arrows) [33]. This remarkable behavior results from a
symmetric to asymmetric deformation pattern change induced by snap-
through instability. Detailed discussion on the negative material indices
of HSF can be found in [33].

Fig. 4(d-f) summarizes the Poisson’s ratio of HSF under uniaxial
compression in the [100] direction. HSF with SC lattice possesses a
near-zero (>0) Poisson’s ratio. By contrast, the Poisson’s ratios of the
BCC and FCC lattices are negative and vary in the range of —0.9 to —0.1.
Note that different from most auxetic behavior that depends on chiral,
reentrant, or rotation mechanisms [7,37,38,66], the auxetic behavior of
HSF is based on an “indentation” mechanism as depicted in Fig. 5(a).
More specifically, the hollow spheres recess in the center-to-center di-
rections between adjacent spheres. As a result of this deformation mode,
HSF with SC lattice exhibits a Poisson’s ratio approaching zero, while
BCC and FCC lattices exhibit negative Poisson’s ratios. This indentation
mechanism can be combined with snap-through instability to induce a
rapid change of volume, which has been harnessed in actuation devices
[33,51].

We further note that the “indentation” mechanism is conditional. It
requires the normal contact stiffness (k,) between adjacent hollow
spheres to be smaller than the shear stiffness (k,) [Fig. 5(b)]. Otherwise,

(@)

SC

(b)

BCC

()

FCC

0.2

3 0.04
%

0.02 4R %

010
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the deformation is shear-dominated instead of indentation-dominated. It
has been shown previously that in a randomly packed three-dimensional
(3D) granular system, the Poisson’s ratio can be calculated by

where A = k;/kj is the shear to normal stiffness ratio [67]; while for 2D
random systems, the equation becomes

Because of the similarity between the granular system and the HSF,
these formulas also apply to the randomly packed HSFs. By micro-
mechanical analysis, we further show that the Poisson’s ratio of BCC and
FCC lattices can be derived as

Upcc = (1 - l)/(2 +l) (16)
and
Vice = (1 =2)/(1 4 4). 17)

These dependencies of Poisson’s ratio on A for differently packed
HSFs are summarized in Fig. 5(b). A comparison of these curves reveals
that (1) the condition 1 > 1 is essential to acquire negative Poisson’s
ratio, which is independent of the packing pattern; (2) arranging HSFs
periodically increases the achievable range of Poisson’s ratio, which can
either limit the Poisson’s ratio close to zero or increase the magnitude of
the negative Poisson’s ratio.

¢ Simulation
M Fitting surf.

0.04 -
0.02 yR SR

0.02 yR

Fig. 6. Comparison between the simulated elastic constants and the results predicted by the general scaling formula for (a) SC, (b) BCC, and (c) FCC packed HSFs.
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Table 1
N orNC

The general scaling formulas to predict the elastic constants of HSFs Poy = a(ﬁ) [(ﬁb) +d]

Py SC BCC FCC
Ev1/E; V12 G12/E; Ev1/E; V12 G12/E; Eq1/E; V12 G12/E;

a 0.5651 1.1289 0.1307 1.926 0.02294 0.1397 1.292 0.2405 0.2644
b 1.158 0.1778 0.7279 1.010 —0.4136 0.9499 0.9778 —0.6674 0.7955
c 1.058 1.897 0.3206 1.527 1.172 0.5154 0.7965 1.619 0.3259
d 0 0.00786 —0.3088 0.03322 —-5.764 0.3387 —0.03598 —0.1491 —0.2734
R? 0.9912 0.9943 0.9970 0.9935 0.9659 0.9945 0.9975 0.9351 0.9985

3.2. General scaling relationship of the elastic properties

Tailorable mechanical property is one important advantage of lattice
materials compared to random cellular materials. As already shown
above, the stress—strain curve and the Poisson’s ratio of HSFs can be
controlled by adjusting the relative thickness of the spherical shells. To
further guide the design of the HSFs, parametric numerical simulations
are performed to obtain quantitative design formulas. Specifically, the
geometric parameters are varied in the simulation with t/R
0.01-0.055 and rp/R = 0.1-0.3. The calculated Young’s modulus, shear
modulus, and Poisson’s ratio are plotted as functions of the geometric
dimensions in Fig. 6. Based on the numerical results, it is found that all
three normalized elastic constants of HSFs can be described by the
following scaling relationship,

) (G +a)

where Py is the normalized material property, i.e., E11/E,, G12/E;, or

t

R

— T
Py = a( - (18)

E. |E g6.8+10"

[hkl) s

(a)

4.9.107

(b)
l’[III(I],S 29_)
(c)
G[hkll‘e
E.

[100] [110]

Fig. 7. Direction-dependent mechanical behavior of BCC packed HSFs lattice. (

v12. @, b, ¢, and d are fitting parameters. By using the trust-region al-
gorithm with the objective function to maximize the coefficient of
determination (RZ), the simulation results are fitted to Eq. (18) [68],
with R? = 1 representing a perfect fitting. Table 1 summarizes the fitting
parameters together with the R? value calculated by a customized
Matlab program. A comparison of the numerical data to the fitting
surfaces is shown in Fig. 6. Impressively, the fitting surfaces based on Eq.
(18) capture the simulation data points very well, which is a qualitative
reflection of R? ~ 1, as summarized in Table 1. As such, the scaling
equations provide a rapid and easy way to predict the elastic constants of
periodic HSF.

We further highlight that the scaling parameter b of the normalized
stiffness (i.e., E11/Es ~ (t/R)) for all the investigated HSFs is close to 1.
Specifically, b = 1.16 for the SC lattice, b = 1.01 for the BCC lattice, and
b = 0.98 for the FCC lattice, suggesting that the normalized stiffness of
all three architected HSFs scales linearly with t/R. Recalling the result in
Section 2.1 that relative density p/p,x t/R, we have E;1/Es xp/p,. This
linear scaling relationship is characteristic of compression/stretching-

Vitwn I

-0.13 3.7:10°

q—hklj/Es I

3
0.38 3.3x10

/R
Jn 10055
0.01

[124]

a) Elastic representative surface of normalized Ejp, Uppg, and E[hkl] with t/R = 0.03.

(b) Polar distribution of Poisson’s ratio and (c) shear modulus in the [100], [110], [111], and [124] directions. The gradient color in (b,c) presents t/R varying from

0.01 to 0.055. The dashed line highlights regions with positive Poisson’s ratio.

Here, /R = 0.2, h/R = 0.02, and Ep/E; = 0.04.
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dominated deformation [69]; thereby, the deformation of HSFs at small
deformation is compression-dominated, regardless of the thin curvy
shape of the hollow spheres. A comparison of HSFs with other ultra-stiff
lattices reveals that the HSFs have a similar specific stiffness to the octet
truss [1], a structure previously shown to be ultra- stiff and strong
[10,11]. This result suggests the potential of using HSFs as candidates
for lightweight, stiff, and strong micro-lattices, in addition to its multi-
functionality summarized in Fig. 1. It should be noted though, that
experimental results of 3D printed periodic spherical foams show a
scaling factor b = 1.56, this may be related to either manufacturing
defects or the holes introduced in the hollow spheres (to enable 3D
printing) [70].

In addition to geometric parameters, the effect of material constit-
uents on the elastic properties of HSF is also investigated. The me-
chanical properties of the HSF are strongly affected by the stiffness ratio
between the binder and the shell, Ep/E,. The calculated design map of
elastic constants of HSFs with a variation of E/Es in the range of 0.01 to
25 is shown in Fig. S3. Notably, varying Ep/E; has a similar effect as
varying /R, meaning that making the binder softer has a similar effect
as making the binder smaller.

3.3. Direction-dependent mechanical properties

With the elastic constants Eq;, v12, and Gy, predicted accurately by
the general scaling formula, we further seek to determine the anisotropic
mechanical properties of HSFs. As discussed in Section 2.3, effective
modulus only depends on the loading direction [hkl], which can be
written as Ejpq and visualized using the elastic representative surface.
Combing FEM simulation with Egs. (6)-(13) allow us to plot the
direction-dependent elastic properties of BCC HSF (t/R = 0.03, rp/R =
0.2, h/R = 0.02) in Fig. 7(a), where the direction-dependent properties
of elastic modulus, average shear stiffness G, and average Poisson’s
ratio Uy (averaged over #) are summarized. It is found that the BCC
HSFs have the maximum Ejp), maximum a[hkl]: but minimum Py in the
[100] direction. In contrast, Ejy and @[hkl] acquire their minimum
values in the [111] direction. Importantly, for all loading directions,
Upkg) varies in the range of —0.38 to —0.13, suggesting that the BCC HSF
can exhibit omnidirectional auxetic behavior.

Furthermore, Poisson’s ratio v ¢ and shear modulus Gy ¢ depend
on two directions, with 6 denoting the second direction. To depict v o
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and Gy, we fix [hkl] in selected orientations ([100], [110], [111],
and [124]) and then plot the variation of vy and Gy e/Es as 6
changes from O to n. The results of BCC HSF are shown in Fig. 7(b,c),
where the relative thickness t/R varies from 0.01 to 0.055. Interestingly,
in the [100] and [111] directions, the polar plots of Poisson’s ratio are
circles, meaning that the HSFs contract equally in all lateral directions
when compressed in these directions. The simulated isotropic property
in these planes may not be a direct result of the structural symmetry but
due to affine deformation, as the BCC lattice has only a three-fold
symmetry in the {111} plane. Moreover, the polar plots of v show
peanut shape in the [110] direction, exhibiting a strong direction de-
pendency. Such peanut shapes are common for general [hkI] directions
as shown in Fig. 3(d). Interestingly, the BCC HSF can exhibit a negative
Poisson’s ratio in certain directions but exhibit a positive Poisson’s ratio
in others. For instance, the BCC lattice with t/R = 0.05 exhibits positive
Poisson’s ratio near § = 0° (marked by the dashed curve in [11 0] plot of
Fig. 7(b)). Such a characteristic feature could enable functional devices
like auxetic effect-based switchers for light/flow control.

Compared to the general two-fold symmetry of Poisson’s ratio in the
0 plane, the shear modulus exhibits a four-fold angular symmetry. As
shown in Fig. 7(c), the angular dependency of Giyq e on € is most sig-
nificant in the [100] direction, while isotropic behavior is observed in
the [111] direction.

In addition to shell thickness, the effect of binder radius on the
anisotropic properties is further plotted in Fig. 8. Again, the effect of
increasing binder radius [Fig. 8(a,b)] has a similar effect as increasing
the shell thickness [Fig. 7(b,c)]: they both reduce the Poisson’s ratio and
increase the shear modulus. Importantly, the effective properties of HSFs
depend strongly on both [hkl] and 6. So, given a specific HSF, we can
obtain different elastic properties by simply changing the loading di-
rection or varying the orientation of the material. For example, under
compression in [11 0] direction, if we change the material orientation (6
direction) from 0° to 90°, the Poisson’s ratio markedly changes from
+0.05 to -0.12.

The direction-dependent performances reported so far focus on HSFs
arranged in a BCC lattice, Fig. S4 and Fig. S5 further summarize the
direction-dependent properties of FCC and SC packed HSFs. The FCC
lattice presents anisotropic properties similar to that of the BCC lattice
but with a less significant anisotropy. By contrast, the SC lattice shows a
different anisotropic profile. Specifically, the SC lattice exhibits the

) r,/R
03 0:5 n jo.3
o2 —3 0.0
01 TN

20)

[124]

Fig. 8. Effect of varying binder radius on the direction-dependent properties of BCC packed HSFs. Polar plots of (a) Poisson’s ratio and (b) shear modulus with [hkl]
selected as [100], [110], [111], and [124]. r,/R = 0.2, h/R = 0.02, and E,/E; = 0.04. The gradient color presents r,/R varying from 0 to 0.3. The dashed curve

marks a positive Poisson’s ratio.
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Fig. 9. (a-c) Anisotropic ratio of SC, BCC, and FCC packed HSFs with varying geometric parameters. The white squares mark the structural designs whose anisotropic
properties are further analyzed in Fig. 10. (d) Design map that depicts mechanical anisotropy based on parameter A/Si;.

minimum Efpy, minimum @[hkl], and maximum Yy in the [100] di-
rection, contrary to the BCC and FCC lattices. In addition, for the
investigated geometric sizes, all SC lattices always exhibit a small pos-
itive Poisson’s ratio when loaded in the [100] direction.

In summary, HSFs packed in SC lattice show the most significant
direction-dependent properties, which is advantageous for applications
like direction-sensitive force sensors and Poisson’s ratio switchers. In
contrast, the FCC HSF can be designed for quasi-isotropic elastic prop-
erties, the highest stiffness of HSFs, and omnidirectional negative Pois-
son’s ratio. The elastic anisotropy of BCC HSF is intermediate between
SC and FCC. Besides the geometric features, the constituent properties
can be further adjusted to achieve a substantial design space of
direction-dependent elastic profiles [Fig. S3(d-e)].

3.4. Quantification of the anisotropic profiles

The direction-dependent properties have been visualized qualita-
tively in elastic representative surfaces and stereographic projection-
based polar plots; we next seek a quantitative description of mechani-
cal anisotropy. The general relationship in Eq. (5), S;j = S;j + A-Fy([hkl],
), gives a mathematical description of the direction-dependent elastic
properties of cubic materials as functions of [hkl] and 6. As Sj; is a con-
stant and the function Fj([hki],0) is solely defined by the lattice
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1 0
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symmetry, so, the greater the value of A, the greater the mechanical
anisotropy. As such, the normalized A value, A/S11, can be used as a
quantitative metric to describe the mechanical anisotropy of cubic ma-
terials. Fig. 9(a—c) summarize the dependency of A/Si; on shell thick-
ness and binder size through simulation. Impressively, HSFs with
different lattice types exhibit different ranges of the anisotropic
parameter, which together, covers a wide range of A/S;; values in the
range of —0.7 to 0.9. Specifically, SC packed HSFs with smaller binder
sizes and thinner shells exhibit stronger anisotropy (A/S11 = 0.9). In
contrast, BCC lattices with larger binder sizes and thicker shells exhibit
greater anisotropy (A/Si1 = -0.7). The FCC packed HSFs, in contrast, can
be designed for quasi-isotropic properties. For instance, the FCC packed
HSF shows A/S1; = 0.004 with r,/R = 0.2 and t/R = 0.01, which is close
to isotropic (A/S11 = 0). The wide range of anisotropic elastic profiles
are visualized in Fig. 9(d) based on parameter A/Si;. Note that this
anisotropic map is true for all cubic materials (not limited to the HSFs of
this study, but also truss-based structures, diamond lattices, etc). For
designs in Fig. 9(a-c), the anisotropy level of the three elastic constants
can be indexed using this map.

In addition to geometric parameters, the anisotropic parameter also
depends significantly on Ep/E; (Fig. S6). This is a highly desired feature
for engineering smart and adaptive lattice materials because the stiffness
contrast Ep/E; can be actively controlled by adjusting the binder prop-
erties using heat or light. For instance, if the binders are fabricated by

[100] [100] [124]

Fig. 10. Evolution of material property as the load direction varies. (a) Definition of the [100], [110], [111], and [124] loading directions. (b) Variation of
normalized modulus E/Ej;oo) as load direction changes. dE/E[1qq) is the change of normalized effective modulus per degree. (c-d) Variation of Poisson’s ratio profile as
the load direction changes between [100]1, [110], [111], and [124] directions. The solid and dashed curves represent negative and positive Poisson’s ratios,

respectively.
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temperature-sensitive shape memory polymers, HSFs with anisotropy
programmable by temperature can be readily produced.

3.5. Evolution of elastic properties as functions of the loading direction

The direction-dependent material properties of HSFs also enable the
active control of mechanical performance by simply rotating the mate-
rial (for example, if we shape the structured material into a sphere). To
show the evolution of elastic properties with respect to the change of the
loading direction, the SC packed HSF, which exhibits a strong direction
dependency, is used for demonstration. Specifically, we plot the
normalized Young’s modulus of SC packed HSF as the loading direction
changes from the [100] to the [11 0] direction [Fig. 10(a)]. In this range
of direction variation, the normalized stiffness increases impressively by
over 90%, corresponding to a change in normalized effective stiffness
per degree (dE/E[loo]) of 0.04 [Fig. 10(b)], which means 2.5 degrees of
angle change can impressively give rise to 10% modulus variation. For a
typical HSF foam material made of aluminum, Ejjo0) ~ 20 MPa, the
corresponding change of stiffness per degree is estimated as 0.8 MPa.
Combining such a significant change in stiffness with deformation-
sensitive electrical materials [26], the SC packed HSF can be used to
develop sensors that detect the change of loading direction.

More systematic evolutions of Poisson’s ratio as the loading direction
changes between [100], [110], [111], and [124] directions are
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depicted in Fig. 10(c) and (d) for SC and FCC HSFs, respectively. The
geometric parameters of these two HSFs are marked by white rectangles
in Fig. 9(a) and (c). Clearly, the SC HSF presents a strong direction de-
pendency, whose Poisson’s ratio can vary from positive to negative or
vary from peanut shape to circular shape depending on the loading di-
rection. Differently, the Poisson’s ratio of the FCC HSF presents a rela-
tively weak direction dependency, which maintains auxetic behavior for
all loading directions. The wide range of direction-dependent profiles
demonstrated here opens the avenue to design anisotropic property-
critical materials for tissue growth direction control, bone scaffolds,
and metamaterials.

3.6. Direction-dependent wave propagation and phononic band structure

Having demonstrated the anisotropic elastic properties of HSFs, we
next show their direction-dependent wave propagation performance.
Specifically, we calculate the wave propagation characteristic of HSFs
for incident waves from different directions, which is presented in the
band diagram (also known as the dispersion relation). Fig. 11 (a) and (b)
show the calculated band diagram of two designs, one with r, = 2.0, h =
0.2, t=1.0 and one withr, = 0.2, h = 0.2, t = 1.0 (R is fixed as 10). The
shaded regions mark the complete band gaps, in which frequency range,
elastic waves of arbitrary incident direction cannot propagate through.
Fig. 11(c) further shows the evolution of band gaps as a function of the
cell wall thickness t for three groups of parameters: the red color

r=0.2, h=0.2, t=1.0

\ =0.
i h=0.2.  h=0.2  h=0.2, i 2
0.98 0.94 0.90 0.86 0.82
Porosity

Fig. 11. (a, b) Dispersion relation and Bloch modes of the BCC packed HSF with (a) r, =2, h = 0.2, and t = 1.0 and (b) r, = 0.2, h = 0.2, and t = 1.0. R is fixed as 10.
(c) Evolution of the band gaps as functions of the shell thickness. (d) Band gaps width vs porosity with varying shell thickness (red line) and binder height (green
lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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represents HSFs with fixed r, = 2.0, h = 6.0, the blue color represents rp
= 2.0, h = 0.2, and green color represents r, = 0.2, h = 0.2. Complete
band gaps exist for a wide range of geometric parameters and become
extremely wide for small or long binder connections. Increasing h,
decreasing rp, and making the shells thicker all make the band gap
wider. These variations of geometric parameters widen the bandgap by
two mechanisms: (1) decreasing the equivalent stiffness of the binder
and (2) increasing the equivalent stiffness of the shell, which magnifies
the stiffness contrast between the shell and the binder.

To further understand the formation mechanism of the observed
wide band gaps, we analyze the eigenmodes on the upper and lower
edges of the bandgap in Fig. 11 (a) and (b). Both these two designs
exhibit maximum bandgaps between the 6™ and 7™ modes with relative
gap widths (BG%) of 14.2% and 140.6%, respectively. While the local-
ized Bloch mode and the narrow bandgap in Fig. 11(a) indicate that the
bandgap is produced by local resonance, the peaks and valleys in the
edges of the bandgap suggest that the bandgap is not formed purely by
local resonance — Bragg scattering might also be a reason. As for the
second case in Fig. 11(b), the non-localized deformation of Bloch mode
(large displacement is observed in the entire structure), non-flat band
edge, and the normalized frequency Q=1 provide evidence that the
lower edge of the bandgap is produced by Bragg scattering. The local-
ized deformation and the flat band edge on the upper edge, however,
suggested that the formation mechanism is also related to local reso-
nance. Based on these two examples of different geometric parameters,
the wide band gap in HSFs results from the coupling between Brag wave
scattering and local resonances.

One advantage of HSFs compared to many other phononic crystals is
their high porosity and low density. To highlight HSFs as a low-density,
wide band gap phononic crystal, we plot the band gap width as functions
of porosity in Fig. 11(c). The plot reveals that HSF with a porosity of 0.82
exhibits a BG% of 140.6%. In particular, the porosity of HSF can be
controlled by the thickness of the sphere t, the binder radius, rp, and/or
binder height, h. The effects of these parameters on porosity and BG%
are summarized in Fig. 11(d). Specifically, the red line describes the
dependency of BG% on porosity variation induced by shell thickness in
the range of t = 0.2-1.0 (r, = 0.2, h = 6.0). When the porosity is tailored
by thickness, BG% increases slowly at decreased porosity and the vari-
ation of BG% is modest. In contrast, when porosity is tailored by
changing the binder height, h, BG% depends strongly on the porosity, as
shown by the large slope of the green lines (plotted with fixed r, = 2.0
and varying h = 0.2-6.0) in Fig. 11(d). The important knowledge we
learned based on the above parametric analysis is: first, the band gap
width of HSFs can either increase or decrease as a function of porosity,
which depends on the tailored design parameter; second, high porosity
and wide bandgap can be achieved simultaneously in HSFs.

Compared to HSFs packed in BCC lattice, HSFs with SC and FCC
packings possess a similar wave propagation characteristic. The band
diagrams of the HSF arranged in SC and FCC lattices are shown in
Fig. S7. The geometric parameters are set to be the same as BCC HSF
shown in Fig. 11(b). Compared to the BCC HSF, the maximum band gaps
are also between 6" and 7™ modes and the band gap width is also
around 140%, suggesting a similar band gap formation mechanism.
Thus, the parametric analysis discussed above for BCC HSFs can be
applied to HSFs arranged in SC and FCC lattices as well.

Finally, we note that although HSF provides a promising design motif
for achieving multiple desired functions, some limitations should be
noted. First, its manufacturing is challenging, as the enclosed hollow
cells cannot be directly produced by 3D printing. Second, the enclosed
hollow spheres may form residual stresses if the HSF experiences a
temperature change that affects the pressure inside the spheres. Third,
reducing manufacturing defects is also important to acquire the pre-
dicted properties. In further studies, developing new fabrication tech-
niques that enable direct production of HSF with minimized defects is
highly desired.
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4. Conclusions

We have showed a general approach to study the direction-
dependent static mechanical properties and the dynamic wave propa-
gation properties of lattice materials by combining numerical simula-
tions and theoretical analysis. Explicit formulas are derived to present
the elastic constants of cubic materials in arbitrary loading directions.
Stereographic projections are demonstrated as a feasible way to present
the anisotropic profiles of shear modulus and Poisson’s ratio. The band
diagram further provides a depiction of the direction-dependent wave
propagation properties of lattice materials. The developed method can
be applied to cubic symmetric materials and also extended to materials
with other symmetries.

Using the developed approach, the anisotropic mechanical proper-
ties of HSFs are studied. The design space of the elastic constants of HSFs
is formulated analytically by a general scaling relationship. These
scaling formulas enable the efficient design of HSFs with desired elastic
properties and anisotropic profiles. HSFs with different anisotropic
profiles, omnidirectional negative Poisson’s ratio, and wide band gap
(BG% = 150%) at high porosity (0.85) are obtained by tailoring the
geometric parameters. The developed method also enables the visuali-
zation of how elastic properties vary continuously as the loading di-
rection changes, opening avenues to design direction-sensitive materials
and sensors.

The direction-dependent properties of HSF can be combined with
previously demonstrated functionalities of HSFs. We hope the methods
and results reported here on HSFs can inform the design of smart porous
and composite materials with extreme lightweight, direction-sensitivity,
reconfigurability, programmability, and multifunctionality.
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