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A B S T R A C T   

Obtaining multifunctionality from microstructures instead of constituents provides a new direction for devel
oping multifunctional materials. Periodic hollow sphere foams (HSFs) offer one lightweight structural motif with 
open and closed cells, high energy absorption, low thermal conductivity, snap-through instability, and triple- 
negative material indices. Here, we investigate the direction-dependent mechanical property, instability, and 
elastic wave isolation behavior of HSFs. Explicit formulas, stereographic projections, and general scaling re
lationships are developed to quantify and visualize the anisotropic mechanical properties of HSFs. By investi
gating the directional wave propagation in HSFs, extremely wide phononic band gaps are identified in the HSFs. 
The derived formulas and the simulation-informed parametric maps allow the design of HSFs with desired static 
and dynamic anisotropic property profiles, including tailorable direction-dependent stiffness/shear modulus, 
negative Poisson’s ratio, and wave isolation properties. Building upon these results, multifunctional design 
concepts of HSFs are further set forth. This study not only reveals tailorable mechanical anisotropy and band gap 
in HSFs, but also develops a general approach to investigate the direction-dependent properties of periodic 
materials, enabling multifunctional applications where lightweight, direction-dependent property, wave atten
uation, and programmability are required simultaneously.   

1. Introduction 

Architected materials provide one approach to achieve multi
functionality by designing the material microstructure [1–6]. In recent 
decades, architected lattice materials have been shown to achieve 
remarkable mechanical, thermal, and acoustic properties, arising from 
their periodic microstructures [1,7–11]. By tailoring the unit cell ge
ometry, lattice materials have been designed successfully to achieve 
property combinations that break performance tradeoffs [12,13], 
improve thermal and mechanical performance [14–16], produce nega
tive material indices [17,18], acquire piezoelectric energy harvesting 
functionalities [19,20], and many others. Developing lattice materials 
with multiple of the above functions is highly in need. In this study, we 
propose periodic hollow sphere foam (HSF) as a lightweight material 
structural motif for multifunctionality. 

HSF is a class of cellular lattice material that exhibits low density, 
large void space, and large specific surface area [21,22] (Fig. 1). It has 
both open and closed cells, which thus offers the advantages of open and 
closed cell foams simultaneously, including large surface area, enhanced 

stiffness, lower thermal conductivity, and buoyancy. In the past, random 
HSFs have been widely used in energy absorption [23], thermal man
agement [24], fluid permeability control [25], and pressure sensors 
[26]. Filling metallic tubes with hollow spheres has been shown as an 
efficient way to improve the axial crushing strength of the tube; binding 
these hollow spheres can improve the crash-worthiness even further 
[27,28]. 

Recent advances in synthesis have enabled the assembly of hollow 
spheres into periodic foams with binding [29], sintering [30], and self- 
assembling processes [31,32]. Such periodic HSF lattices have well- 
defined material architecture and enable functions beyond that of 
traditional random foams. For example, the mechanical and thermal 
properties of periodic HSFs can be tailored by designing geometric pa
rameters [15,33]. Periodic structures also give rise to unusual properties 
like band gaps [34–36] and negative material indices [17,37,38]. Pho
nonic crystals with complete bandgap are important to applications like 
wave filters [39–42], waveguides [43–45], frequency modulators 
[46,47], acoustic cloaks [48,49], and thermal insulators [50]. Recently, 
by taking advantage of the snap-through instability of spherical shells, 
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mechanical memory has also been devised, which enables programma
ble modulus and strength over an order of magnitude [51]. Fig. 1 pro
vides an overview of the functionalities and applications of HSFs. 

Applications of lattice materials in research fields like scaffolds for 
bone regeneration [19], substrates for tissue growth [52], multi-lattice 
structures [53], and metamaterials [1] have set additional re
quirements to designing a materials’ anisotropic properties [54]. Sim
ulations approaches have been used to plot the anisotropic modulus map 
of periodic lattices and composites [55,56]. It has been shown that truss- 
based lattice materials often exhibit high mechanical anisotropy; 
introducing redundant trusses and combining different lattices types 
provides one efficient way to adjust anisotropy and to achieve quasi- 
isotropic properties [54]; designing the structural morphology pro
vides an alternative approach to tune anisotropy [57]. Moreover, in 
addition to static mechanical properties, the wave propagation proper
ties of lattice materials are also direction dependent – waves of certain 
frequencies are often allowed to propagate in some directions but not in 
others [58]. 

In this study, we investigate the direction-dependent elastic and 
wave propagation properties of HSFs, aiming to introduce new func
tionalities to the functional library of HSFs (Fig. 1). Specifically, we first 
propose explicit formulas and adapt the stereographic projection 
method in crystallography to study the direction-dependent properties 
of lattice materials. Combining with numerical simulations, the aniso
tropic mechanical properties of HSFs arranged in simple cubic (SC), 
body-centered cubic (BCC), and face-centered cubic (FCC) lattices are 
studied systematically. Universal scaling equations are proposed to 
describe the elastic constants of HSFs and guide their quantitative 
design. The direction-dependent wave propagation properties in HSFs 
are further inspected. Finally, based on the direction-dependent prop
erties shown herein, concept designs of HSFs as tailorable, adaptive, and 
programmable multifunctional materials are demonstrated. 

2. Materials and methods 

2.1. Structural description of the hollow sphere foams 

As depicted in Fig. 1(a), HSFs are a periodic assembly of spherical 

shells connected by binders. The geometry of the HSFs is defined by four 
parameters, the radius of the hollow sphere, R, the thickness of the 
hollow sphere, t, the radius of the binder, rb, and the height of the binder, 
h. Here, we limit the arrangement of hollow spheres to be cubic sym
metric, i.e., in SC, BCC, and FCC lattices. The corresponding unit cells 
are shown in Fig. 2. As the unit cells consist of shells and binders, a first- 
order estimation of the volume occupied by HSF in a unit cell is 
n⋅4πR2t + m⋅πr2

b h, with n and m depict the numbers of shells and the 
numbers of binders in a unit cell, respectively. The total volume of the 
unit cell is proportional to R3, so, the volume fraction of HSF can be 
evaluated as 

Vf = At/R+B(rb/R)2h/R, (1)  

where A and B are scaling constants that depend on the lattice type. 
When the binders are relatively small (rb → 0 or h → 0), the volume 
fraction Vf ∝At/R, and the relative density of HSF is proportional to the 
relative shell thickness (t/R). 

2.2. Mechanical simulation 

Finite element simulations are carried out to obtain the elastic con
stants of the HSFs. For cubic materials, the elastic tensor is defined by 
three elastic constants, namely, Young’s modulus E11, Poisson’s ratio 
ν12, and shear modulus G12. In the simulation,E11 and ν12 are evaluated 
by performing numerical uniaxial compression while G12 is obtained by 
performing numerical simple shear tests. To reduce the computational 
cost, the simulations are conducted on unit cells with periodic boundary 
conditions, as described in Fig. 2a [59] (see more details are in the 
supplementary materials). Specifically, the unit cell is subjected to a 
prescribed deformation defined by the deformation gradient F, the dis
placements on pairs of points on the periodic boundaries are enforced to 
satisfy [59,60] 

u(B) − u(A) = (F − I){X(B) − X(A) } = H{X(B) − X(A) } (2)  

where A and B are paired points located on the opposite faces of the unit 
cell as illustrated in Fig. 2(a); u denotes the displacement, X denotes the 

Fig. 1. Multifunctional properties of the hollow sphere foam (HSF) enabled by microstructure. (a) The geometry of HSFs is defined by R, t, rb, and h. (b) The 
multifunctionality and corresponding applications of HSFs. The SEM image in (a) is reproduced with permission from Ref. [32]. Copyright 2012 American Chemical 
Society. The image panels of airplane and space capsule in (b) are acquired from open online resources. 
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position in the reference configuration, and H ≡ F-I is the macroscopic 
displacement gradient tensor. Simulation is conducted in ABAQUS. H3×3 
is implemented by three reference nodes and the components of H3×3 
are assigned based on the loading condition. For uniaxial compression in 
the x-direction, H11 is assigned as the applied compressive strain (0.05 
for evaluating elastic constants) while all the diagonal components of H 
are assigned to be zero. A representative mesh used in the simulation is 
shown in Fig. S1. 

Based on the macroscopic response of the unit cell calculated from 
ABAQUS, E11, ν12, and G12 are calculated accordingly. Because the 
hollow spheres have thin features, their local strain is small under a 
compressive strain up to 0.13. Moreover, as the anisotropic elastic 
constants are defined by the small deformation regime of the HSF, 
elastic material models are used in the simulations. The material prop
erties used in the simulation are Eb/Es = 0.04, νb = 0.4 andνs = 0.3, 
representing aluminum or glass hollow spheres (Es = 70 GPa) connected 
by polymetric binders (Eb = 2.8 GPa). The geometric parameters are t/R 

= 0.03, rb/R = 0.2, h/R = 0.02 unless otherwise specified. The subscripts 
“b” and “s” refer to the binder and shell, respectively. 

2.3. Formula and approach to visualize the anisotropic elastic properties 
of cubic materials 

The elastic constants E11, ν12, and G12 describe the mechanical 
behavior of HSFs when loads are applied in the orthogonal directions 
(x1, x2, and x3) of the reference coordinate system x[Fig. 3(a)]. To 
visualize the mechanical properties of a material in arbitrary loading 
directions, a spatial coordinate system (x′ ) is introduced. Because 
Young’s modulus only depends on one direction – the direction of the 
load, thereby, its direction-dependent behavior can be visualized using a 
3D elastic representative surface [Fig. 3(c)][61]. In contrast, Poisson’s 
ratio (νij) and shear modulus (Gij) depend on two directions: the loading 
direction i and the second lateral direction j. For a specified loading 
direction i, direction j is defined perpendicular to direction i and varies 

Fig. 2. (a) The unit cells and (b) the boundary conditions used to simulate the elastic properties of HSFs.  

Fig. 3. Visualization of the direction-dependency of Young’s modulus, Poisson’s ratio, and shear modulus. (a) Definition of the reference and the spatial coordinate 
systems. (b) Illustration of the two directions ([hkl] and θ) used to define Poisson’s ratio νij and shear modulus Gij. (c) Elastic representative surface describes material 
parameters that only depend on one direction (like Young’s modulus E[hkl]). (d) The triangle of the stereographic projection describes material parameters that depend 
on two directions (like Poisson’s ratio ν[hkl],θ and shear modulus G[hkl],θ). The polar plots are drawn to scale. 
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in the range of [0, 2π) [Fig. 3(b)]. Defining the directions i and j by [hkl]
and θ, respectively, we can generate a polar plot for each given [hkl] as 
shown in Fig. 3(b, d). We have obtained formulas to depict elastic 
anisotropy previously in [33], here, we provide the detailed derivation 
for the completeness of this study. 

For a cubic material, symmetry requires the elastic compliance 
tensor to have the following form [62], 

S′

ijkm = S12δijδkm +
1
4
S44(δikδjm + δimδjk)+ (S11 − S12 −

1
4

S44)aitajtaktamt. (3)  

where Sijkm and S′

ijkm are the compliant tensor in the reference coordinate 

system (x) and spatial coordinate system (x′ ), respectively. The notation 
aitajtaktamt follows [62], which is defined as 

∑
t=1,2,3aitajtaktamt . The 

transformation matrix, ast , has the following form,  

Combining Eqs. (3) and (4), S′

ijkm can be written in a general equation 
(with the Voigt notation S’

ij), 

S′

ij = Sij +A⋅Fij([hkl], θ). (5)  

where A = (S11 − S12 −
1
2S44) is the anisotropic parameter. Fij([hkl], θ) are 

functions of the direction vector [hkl] and rotation angle θ. The expres
sions of Fij are 

F11 = − 2
(
h2k2 + k2l2 + l2h2), (6)  

F12 =
2

k2 + l2

[(
k4 + k2l2 + l4)cos2θ+ hkl

(
l2 − k2)cosθsinθ+ k2l2sin2θ

]
,

(7)  

Based on Eqs. (5) and (6), Young’s modulus of a cubic material in an 
arbitrary direction [hkl] is derived, 

1
E[hkl]

=
1
E′ = S′

11 =
1

E[100]
− 2A(h2k2 + k2l2 + l2h2). (9) 

Eq. (9) recovers the formula of elastic representative surface, which 
has been previously derived in Refs. [61,63]. Moreover, Poisson’s ratio 
and shear modulus can be expressed as, 

ν[hkl],θ = −
S′

12

S′

11
= −

S12 + A⋅F12([hkl], θ)
S11 + A⋅F11([hkl], θ)

, (10)  

G[hkl],θ =
1

S′

44
= −

1
S44 + A⋅F44([hkl], θ)

. (11) 

These equations show that Poisson’s ratio and shear modulus depend 
not only on [hkl] but also on θ. Therefore, a method different from the 
elastic representative surface should be used to visualize their direction 
dependency. We adapt the stereographic projection plots in crystallog
raphy to show the anisotropy of the two direction-dependent material 
parameters, ν[hkl],θ and G[hkl],θ [64]. Fig. 3(d) shows examples of stereo
graphic projections of shear modulus and Poisson’s ratio, which depict 
how the shear modulus and Poisson’s ratio change as both the loading 
direction [hkl] and angle θ vary. For instance, as the loading direction 
[hkl] changes from [001] to [111], the dependency of G[hkl],θ on θ 
gradually decreases and finally becomes θ-independent. In contrast, the 
Poisson’s ratio is θ -independent for both the [001] and [111] di

rections but shows a two-fold symmetry for other loading directions. 
In addition to a full two direction-dependent picture, the average 

values of ν[hkl],θ and G[hkl],θ for a certain direction [hkl] are also desired in 
many scenarios. These average values can be calculated by integrating 
over the angle θ as, ν[hkl] =

1
2π
∫ 2π

0 ν[hkl],θdθ and G[hkl],θ =
1
2π
∫ 2π

0 G[hkl],θdθ, 
which gives, 

ν[hkl] = E[hkl]

{
v12
E11

−
A

k2 + l2

[
k2l2 + h2( k4 + k2l2 + l4) ]

}

, (12)  

1/G[kl] = 1/G12 +
A

2
(
k2 + l2

)2

[(
k2 + l2)4

+
(
h2k2 + l2)2

+
(
k2 + h2l2)2

]
.

(13) 

These averaged parameters only depend on the loading direction 
[hkl] and can thus be shown in the elastic representative surfaces like 
Young’s modulus. 

2.4. Wave propagation calculation 

The direction-dependent wave propagation properties are obtained 
by calculating the dispersion relations based on primitive unit cells in 
COMSOL Multiphysics. The primitive unit cells and the corresponding 
irreducible Brillouin zones for HSFs with different lattice structures are 
summarized in Fig. S2 [65]. The Bloch-Floquet periodic boundary con
dition is implemented and the eigenfrequency sweep is performed along 
the edges of the first irreducible Brillouin zone. In the simulation, 
tetrahedra elements are used and the mesh sensitivity is verified. The 
dispersion relations are obtained numerically and verified by comparing 
them with the frequency-domain transmission simulations. 

ast =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + k2 + l2

√
k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + k2 + l2

√
l

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + k2 + l2

√

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + l2

√
cosθ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + k2 + l2

√
hkcosθ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + l2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + k2 + l2

√ −
lsinθ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
l2 + k2

√
hlcosθ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + l2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + k2 + l2

√ +
ksinθ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
l2 + k2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + l2

√
sinθ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + k2 + l2

√ −
lcosθ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + k2

√ −
hksinθ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + l2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + k2 + l2

√
kcosθ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + k2

√ −
hlsinθ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + l2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + k2 + l2

√

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4)   

F44 =
4

(k2 + l2)
2

[
(k2 + l2)

4cos2θsin2θ+(lcosθ + hksinθ)2
(hkcosθ − lsinθ)2

+(hlcosθ + ksinθ)2
(kcosθ − hlsinθ)2

]
. (8)   
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3. Results and discussion 

3.1. The elastic constants of HSFs loaded in [100] direction 

We start by investigating the mechanical properties of HSFs under 

compression. Fig. 4(a-c) summarizes the normalized stress–strain equi
librium paths of HSFs with SC, BCC, and FCC lattices when compressed 
in the [100] direction. It is shown that the HSFs with SC and BCC lattices 
present the typical compressive response of cellular materials, which are 
featured by three stages – the linear elastic regime, the stable 

Fig. 4. (a-c) Stress–strain diagram and (d-f) Poisson’s ratio-strain diagram of HSFs arranged in SC, BCC, and FCC lattices. t/R = 0.01–0.055, rb/R = 0.2, h/R = 0.02, 
Eb/Es = 0.04. The subscripts 1 and 2 of σ11 and ν12 refer to the [100] and [010] directions, respectively. 

Fig. 5. The auxetic behavior of HSFs. (a) Deformation of HSFs at compressive engineering strain of 0, 0.05, and 0.1. The white arrows mark the directions of 
recession. t/R = 0.03, rb/R = 0.2, Eb/Es = 0.04. (b) Poisson’s ratio vs contact stiffness ratio (λ = kt/kn) for spherical shells with different arrangements. 
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deformation plateau, and the post-contact strain hardening regime [7]. 
Such a three-stage behavior renders the HSF material an impressive 
energy absorption capability. Notably, some of the BCC HSFs exhibit 
negative incremental stiffness due to the snap-through behavior [Fig. 4 
(b)]. More impressively, snap-back is observed in the BCC HSF with t/R 
~ 0.035, which theoretically leads to an incremental stiffness 
approaching negative infinity under displacement-controlled loading 
(marked by black arrows) [33]. This remarkable behavior results from a 
symmetric to asymmetric deformation pattern change induced by snap- 
through instability. Detailed discussion on the negative material indices 
of HSF can be found in [33]. 

Fig. 4(d–f) summarizes the Poisson’s ratio of HSF under uniaxial 
compression in the [100] direction. HSF with SC lattice possesses a 
near-zero (>0) Poisson’s ratio. By contrast, the Poisson’s ratios of the 
BCC and FCC lattices are negative and vary in the range of − 0.9 to − 0.1. 
Note that different from most auxetic behavior that depends on chiral, 
reentrant, or rotation mechanisms [7,37,38,66], the auxetic behavior of 
HSF is based on an “indentation” mechanism as depicted in Fig. 5(a). 
More specifically, the hollow spheres recess in the center-to-center di
rections between adjacent spheres. As a result of this deformation mode, 
HSF with SC lattice exhibits a Poisson’s ratio approaching zero, while 
BCC and FCC lattices exhibit negative Poisson’s ratios. This indentation 
mechanism can be combined with snap-through instability to induce a 
rapid change of volume, which has been harnessed in actuation devices 
[33,51]. 

We further note that the “indentation” mechanism is conditional. It 
requires the normal contact stiffness (kn) between adjacent hollow 
spheres to be smaller than the shear stiffness (kt) [Fig. 5(b)]. Otherwise, 

the deformation is shear-dominated instead of indentation-dominated. It 
has been shown previously that in a randomly packed three-dimensional 
(3D) granular system, the Poisson’s ratio can be calculated by 

ν3D = (1 − λ)/(4 + λ), (14)  

where λ = kt/kn is the shear to normal stiffness ratio [67]; while for 2D 
random systems, the equation becomes 

ν2D = (1 − λ)/(3 + λ). (15) 

Because of the similarity between the granular system and the HSF, 
these formulas also apply to the randomly packed HSFs. By micro
mechanical analysis, we further show that the Poisson’s ratio of BCC and 
FCC lattices can be derived as 

νBCC = (1 − λ)/(2 + λ) (16)  

and 

νFCC = (1 − λ)/(1 + λ). (17) 

These dependencies of Poisson’s ratio on λ for differently packed 
HSFs are summarized in Fig. 5(b). A comparison of these curves reveals 
that (1) the condition λ > 1 is essential to acquire negative Poisson’s 
ratio, which is independent of the packing pattern; (2) arranging HSFs 
periodically increases the achievable range of Poisson’s ratio, which can 
either limit the Poisson’s ratio close to zero or increase the magnitude of 
the negative Poisson’s ratio. 

Fig. 6. Comparison between the simulated elastic constants and the results predicted by the general scaling formula for (a) SC, (b) BCC, and (c) FCC packed HSFs.  
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3.2. General scaling relationship of the elastic properties 

Tailorable mechanical property is one important advantage of lattice 
materials compared to random cellular materials. As already shown 
above, the stress–strain curve and the Poisson’s ratio of HSFs can be 
controlled by adjusting the relative thickness of the spherical shells. To 
further guide the design of the HSFs, parametric numerical simulations 
are performed to obtain quantitative design formulas. Specifically, the 
geometric parameters are varied in the simulation with t/R =

0.01–0.055 and rb/R = 0.1–0.3. The calculated Young’s modulus, shear 
modulus, and Poisson’s ratio are plotted as functions of the geometric 
dimensions in Fig. 6. Based on the numerical results, it is found that all 
three normalized elastic constants of HSFs can be described by the 
following scaling relationship, 

Peff = a
( t

R

)b[(rb

R

)c
+ d

]
, (18)  

where Peff is the normalized material property, i.e., E11/Es, G12/Es, or 

ν12. a, b, c, and d are fitting parameters. By using the trust-region al
gorithm with the objective function to maximize the coefficient of 
determination (R2), the simulation results are fitted to Eq. (18) [68], 
with R2 = 1 representing a perfect fitting. Table 1 summarizes the fitting 
parameters together with the R2 value calculated by a customized 
Matlab program. A comparison of the numerical data to the fitting 
surfaces is shown in Fig. 6. Impressively, the fitting surfaces based on Eq. 
(18) capture the simulation data points very well, which is a qualitative 
reflection of R2 ≈ 1, as summarized in Table 1. As such, the scaling 
equations provide a rapid and easy way to predict the elastic constants of 
periodic HSF. 

We further highlight that the scaling parameter b of the normalized 
stiffness (i.e., E11/Es ~ (t/R)b) for all the investigated HSFs is close to 1. 
Specifically, b = 1.16 for the SC lattice, b = 1.01 for the BCC lattice, and 
b = 0.98 for the FCC lattice, suggesting that the normalized stiffness of 
all three architected HSFs scales linearly with t/R. Recalling the result in 
Section 2.1 that relative density ρ/ρs∝ t/R, we have E11/Es ∝ρ/ρs. This 
linear scaling relationship is characteristic of compression/stretching- 

Table 1 

The general scaling formulas to predict the elastic constants of HSFs Peff = a
( t
R

)b[( rb

R

)c
+ d

]

Peff SC BCC FCC 

E11/Es ν12 G12/Es E11/Es ν12 G12/Es E11/Es ν12 G12/Es 

a 0.5651  1.1289  0.1307  1.926  0.02294  0.1397  1.292  0.2405  0.2644 
b 1.158  0.1778  0.7279  1.010  − 0.4136  0.9499  0.9778  − 0.6674  0.7955 
c 1.058  1.897  0.3206  1.527  1.172  0.5154  0.7965  1.619  0.3259 
d 0  0.00786  − 0.3088  0.03322  − 5.764  0.3387  − 0.03598  − 0.1491  − 0.2734 
R2 0.9912  0.9943  0.9970  0.9935  0.9659  0.9945  0.9975  0.9351  0.9985  

Fig. 7. Direction-dependent mechanical behavior of BCC packed HSFs lattice. (a) Elastic representative surface of normalized E[hkl], ν[hkl], and G[hkl] with t/R = 0.03. 
(b) Polar distribution of Poisson’s ratio and (c) shear modulus in the [100], [110], [111], and [124] directions. The gradient color in (b,c) presents t/R varying from 
0.01 to 0.055. The dashed line highlights regions with positive Poisson’s ratio. Here, rb/R = 0.2, h/R = 0.02, and Eb/Es = 0.04. 
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dominated deformation [69]; thereby, the deformation of HSFs at small 
deformation is compression-dominated, regardless of the thin curvy 
shape of the hollow spheres. A comparison of HSFs with other ultra-stiff 
lattices reveals that the HSFs have a similar specific stiffness to the octet 
truss [1], a structure previously shown to be ultra- stiff and strong 
[10,11]. This result suggests the potential of using HSFs as candidates 
for lightweight, stiff, and strong micro-lattices, in addition to its multi
functionality summarized in Fig. 1. It should be noted though, that 
experimental results of 3D printed periodic spherical foams show a 
scaling factor b = 1.56, this may be related to either manufacturing 
defects or the holes introduced in the hollow spheres (to enable 3D 
printing) [70]. 

In addition to geometric parameters, the effect of material constit
uents on the elastic properties of HSF is also investigated. The me
chanical properties of the HSF are strongly affected by the stiffness ratio 
between the binder and the shell, Eb/Es. The calculated design map of 
elastic constants of HSFs with a variation of Eb/Es in the range of 0.01 to 
25 is shown in Fig. S3. Notably, varying Eb/Es has a similar effect as 
varying rb/R, meaning that making the binder softer has a similar effect 
as making the binder smaller. 

3.3. Direction-dependent mechanical properties 

With the elastic constants E11, ν12, and G12 predicted accurately by 
the general scaling formula, we further seek to determine the anisotropic 
mechanical properties of HSFs. As discussed in Section 2.3, effective 
modulus only depends on the loading direction [hkl], which can be 
written as E[hkl] and visualized using the elastic representative surface. 
Combing FEM simulation with Eqs. (6)–(13) allow us to plot the 
direction-dependent elastic properties of BCC HSF (t/R = 0.03, rb/R =
0.2, h/R = 0.02) in Fig. 7(a), where the direction-dependent properties 
of elastic modulus, average shear stiffness G[hkl], and average Poisson’s 
ratio ν[hkl] (averaged over θ) are summarized. It is found that the BCC 
HSFs have the maximum E[hkl], maximum G[hkl], but minimum ν[hkl] in the 
[100] direction. In contrast, E[hkl] and G[hkl] acquire their minimum 
values in the [111] direction. Importantly, for all loading directions, 
ν[hkl] varies in the range of − 0.38 to − 0.13, suggesting that the BCC HSF 
can exhibit omnidirectional auxetic behavior. 

Furthermore, Poisson’s ratio ν[hkl],θ and shear modulus G[hkl],θ depend 
on two directions, with θ denoting the second direction. To depict ν[hkl],θ 

and G[hkl],θ, we fix [hkl] in selected orientations ([100], [110], [111], 
and [124]) and then plot the variation of ν[hkl],θ and G[hkl],θ/Es as θ 
changes from 0 to π. The results of BCC HSF are shown in Fig. 7(b,c), 
where the relative thickness t/R varies from 0.01 to 0.055. Interestingly, 
in the [100] and [111] directions, the polar plots of Poisson’s ratio are 
circles, meaning that the HSFs contract equally in all lateral directions 
when compressed in these directions. The simulated isotropic property 
in these planes may not be a direct result of the structural symmetry but 
due to affine deformation, as the BCC lattice has only a three-fold 
symmetry in the {111} plane. Moreover, the polar plots of ν[hkl],θ show 
peanut shape in the [110] direction, exhibiting a strong direction de
pendency. Such peanut shapes are common for general [hkl] directions 
as shown in Fig. 3(d). Interestingly, the BCC HSF can exhibit a negative 
Poisson’s ratio in certain directions but exhibit a positive Poisson’s ratio 
in others. For instance, the BCC lattice with t/R = 0.05 exhibits positive 
Poisson’s ratio near θ = 0◦ (marked by the dashed curve in [110] plot of 
Fig. 7(b)). Such a characteristic feature could enable functional devices 
like auxetic effect-based switchers for light/flow control. 

Compared to the general two-fold symmetry of Poisson’s ratio in the 
θ plane, the shear modulus exhibits a four-fold angular symmetry. As 
shown in Fig. 7(c), the angular dependency of G[hkl],θ on θ is most sig
nificant in the [100] direction, while isotropic behavior is observed in 
the [111] direction. 

In addition to shell thickness, the effect of binder radius on the 
anisotropic properties is further plotted in Fig. 8. Again, the effect of 
increasing binder radius [Fig. 8(a,b)] has a similar effect as increasing 
the shell thickness [Fig. 7(b,c)]: they both reduce the Poisson’s ratio and 
increase the shear modulus. Importantly, the effective properties of HSFs 
depend strongly on both [hkl] and θ. So, given a specific HSF, we can 
obtain different elastic properties by simply changing the loading di
rection or varying the orientation of the material. For example, under 
compression in [110] direction, if we change the material orientation (θ 
direction) from 0◦ to 90◦, the Poisson’s ratio markedly changes from 
+0.05 to –0.12. 

The direction-dependent performances reported so far focus on HSFs 
arranged in a BCC lattice, Fig. S4 and Fig. S5 further summarize the 
direction-dependent properties of FCC and SC packed HSFs. The FCC 
lattice presents anisotropic properties similar to that of the BCC lattice 
but with a less significant anisotropy. By contrast, the SC lattice shows a 
different anisotropic profile. Specifically, the SC lattice exhibits the 

Fig. 8. Effect of varying binder radius on the direction-dependent properties of BCC packed HSFs. Polar plots of (a) Poisson’s ratio and (b) shear modulus with [hkl] 
selected as [100], [110], [111], and [124]. rb/R = 0.2, h/R = 0.02, and Eb/Es = 0.04. The gradient color presents rb/R varying from 0 to 0.3. The dashed curve 
marks a positive Poisson’s ratio. 
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minimum E[hkl], minimum G[hkl], and maximum ν[hkl] in the [100] di
rection, contrary to the BCC and FCC lattices. In addition, for the 
investigated geometric sizes, all SC lattices always exhibit a small pos
itive Poisson’s ratio when loaded in the [100] direction. 

In summary, HSFs packed in SC lattice show the most significant 
direction-dependent properties, which is advantageous for applications 
like direction-sensitive force sensors and Poisson’s ratio switchers. In 
contrast, the FCC HSF can be designed for quasi-isotropic elastic prop
erties, the highest stiffness of HSFs, and omnidirectional negative Pois
son’s ratio. The elastic anisotropy of BCC HSF is intermediate between 
SC and FCC. Besides the geometric features, the constituent properties 
can be further adjusted to achieve a substantial design space of 
direction-dependent elastic profiles [Fig. S3(d–e)]. 

3.4. Quantification of the anisotropic profiles 

The direction-dependent properties have been visualized qualita
tively in elastic representative surfaces and stereographic projection- 
based polar plots; we next seek a quantitative description of mechani
cal anisotropy. The general relationship in Eq. (5), S′

ij = Sij + A⋅Fij([hkl],
θ), gives a mathematical description of the direction-dependent elastic 
properties of cubic materials as functions of [hkl] and θ. As Sij is a con
stant and the function Fij([hkl], θ) is solely defined by the lattice 

symmetry, so, the greater the value of A, the greater the mechanical 
anisotropy. As such, the normalized A value, A/S11, can be used as a 
quantitative metric to describe the mechanical anisotropy of cubic ma
terials. Fig. 9(a–c) summarize the dependency of A/S11 on shell thick
ness and binder size through simulation. Impressively, HSFs with 
different lattice types exhibit different ranges of the anisotropic 
parameter, which together, covers a wide range of A/S11 values in the 
range of − 0.7 to 0.9. Specifically, SC packed HSFs with smaller binder 
sizes and thinner shells exhibit stronger anisotropy (A/S11 = 0.9). In 
contrast, BCC lattices with larger binder sizes and thicker shells exhibit 
greater anisotropy (A/S11 = -0.7). The FCC packed HSFs, in contrast, can 
be designed for quasi-isotropic properties. For instance, the FCC packed 
HSF shows A/S11 = 0.004 with rb/R = 0.2 and t/R = 0.01, which is close 
to isotropic (A/S11 = 0). The wide range of anisotropic elastic profiles 
are visualized in Fig. 9(d) based on parameter A/S11. Note that this 
anisotropic map is true for all cubic materials (not limited to the HSFs of 
this study, but also truss-based structures, diamond lattices, etc). For 
designs in Fig. 9(a-c), the anisotropy level of the three elastic constants 
can be indexed using this map. 

In addition to geometric parameters, the anisotropic parameter also 
depends significantly on Eb/Es (Fig. S6). This is a highly desired feature 
for engineering smart and adaptive lattice materials because the stiffness 
contrast Eb/Es can be actively controlled by adjusting the binder prop
erties using heat or light. For instance, if the binders are fabricated by 

Fig. 9. (a-c) Anisotropic ratio of SC, BCC, and FCC packed HSFs with varying geometric parameters. The white squares mark the structural designs whose anisotropic 
properties are further analyzed in Fig. 10. (d) Design map that depicts mechanical anisotropy based on parameter A/S11. 

Fig. 10. Evolution of material property as the load direction varies. (a) Definition of the [100], [110], [111], and [124] loading directions. (b) Variation of 
normalized modulus E/E[100] as load direction changes. dE/E[100] is the change of normalized effective modulus per degree. (c-d) Variation of Poisson’s ratio profile as 
the load direction changes between [100], [110], [111], and [124] directions. The solid and dashed curves represent negative and positive Poisson’s ratios, 
respectively. 
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temperature-sensitive shape memory polymers, HSFs with anisotropy 
programmable by temperature can be readily produced. 

3.5. Evolution of elastic properties as functions of the loading direction 

The direction-dependent material properties of HSFs also enable the 
active control of mechanical performance by simply rotating the mate
rial (for example, if we shape the structured material into a sphere). To 
show the evolution of elastic properties with respect to the change of the 
loading direction, the SC packed HSF, which exhibits a strong direction 
dependency, is used for demonstration. Specifically, we plot the 
normalized Young’s modulus of SC packed HSF as the loading direction 
changes from the [100] to the [110] direction [Fig. 10(a)]. In this range 
of direction variation, the normalized stiffness increases impressively by 
over 90%, corresponding to a change in normalized effective stiffness 
per degree (dE/E[100]) of 0.04 [Fig. 10(b)], which means 2.5 degrees of 
angle change can impressively give rise to 10% modulus variation. For a 
typical HSF foam material made of aluminum, E[100] ≈ 20 MPa, the 
corresponding change of stiffness per degree is estimated as 0.8 MPa. 
Combining such a significant change in stiffness with deformation- 
sensitive electrical materials [26], the SC packed HSF can be used to 
develop sensors that detect the change of loading direction. 

More systematic evolutions of Poisson’s ratio as the loading direction 
changes between [100], [110], [111], and [124] directions are 

depicted in Fig. 10(c) and (d) for SC and FCC HSFs, respectively. The 
geometric parameters of these two HSFs are marked by white rectangles 
in Fig. 9(a) and (c). Clearly, the SC HSF presents a strong direction de
pendency, whose Poisson’s ratio can vary from positive to negative or 
vary from peanut shape to circular shape depending on the loading di
rection. Differently, the Poisson’s ratio of the FCC HSF presents a rela
tively weak direction dependency, which maintains auxetic behavior for 
all loading directions. The wide range of direction-dependent profiles 
demonstrated here opens the avenue to design anisotropic property- 
critical materials for tissue growth direction control, bone scaffolds, 
and metamaterials. 

3.6. Direction-dependent wave propagation and phononic band structure 

Having demonstrated the anisotropic elastic properties of HSFs, we 
next show their direction-dependent wave propagation performance. 
Specifically, we calculate the wave propagation characteristic of HSFs 
for incident waves from different directions, which is presented in the 
band diagram (also known as the dispersion relation). Fig. 11 (a) and (b) 
show the calculated band diagram of two designs, one with rb = 2.0, h =
0.2, t = 1.0 and one with rb = 0.2, h = 0.2, t = 1.0 (R is fixed as 10). The 
shaded regions mark the complete band gaps, in which frequency range, 
elastic waves of arbitrary incident direction cannot propagate through. 
Fig. 11(c) further shows the evolution of band gaps as a function of the 
cell wall thickness t for three groups of parameters: the red color 

Fig. 11. (a, b) Dispersion relation and Bloch modes of the BCC packed HSF with (a) rb = 2, h = 0.2, and t = 1.0 and (b) rb = 0.2, h = 0.2, and t = 1.0. R is fixed as 10. 
(c) Evolution of the band gaps as functions of the shell thickness. (d) Band gaps width vs porosity with varying shell thickness (red line) and binder height (green 
lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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represents HSFs with fixed rb = 2.0, h = 6.0, the blue color represents rb 
= 2.0, h = 0.2, and green color represents rb = 0.2, h = 0.2. Complete 
band gaps exist for a wide range of geometric parameters and become 
extremely wide for small or long binder connections. Increasing h, 
decreasing rb, and making the shells thicker all make the band gap 
wider. These variations of geometric parameters widen the bandgap by 
two mechanisms: (1) decreasing the equivalent stiffness of the binder 
and (2) increasing the equivalent stiffness of the shell, which magnifies 
the stiffness contrast between the shell and the binder. 

To further understand the formation mechanism of the observed 
wide band gaps, we analyze the eigenmodes on the upper and lower 
edges of the bandgap in Fig. 11 (a) and (b). Both these two designs 
exhibit maximum bandgaps between the 6th and 7th modes with relative 
gap widths (BG%) of 14.2% and 140.6%, respectively. While the local
ized Bloch mode and the narrow bandgap in Fig. 11(a) indicate that the 
bandgap is produced by local resonance, the peaks and valleys in the 
edges of the bandgap suggest that the bandgap is not formed purely by 
local resonance – Bragg scattering might also be a reason. As for the 
second case in Fig. 11(b), the non-localized deformation of Bloch mode 
(large displacement is observed in the entire structure), non-flat band 
edge, and the normalized frequency Ω≈1 provide evidence that the 
lower edge of the bandgap is produced by Bragg scattering. The local
ized deformation and the flat band edge on the upper edge, however, 
suggested that the formation mechanism is also related to local reso
nance. Based on these two examples of different geometric parameters, 
the wide band gap in HSFs results from the coupling between Brag wave 
scattering and local resonances. 

One advantage of HSFs compared to many other phononic crystals is 
their high porosity and low density. To highlight HSFs as a low-density, 
wide band gap phononic crystal, we plot the band gap width as functions 
of porosity in Fig. 11(c). The plot reveals that HSF with a porosity of 0.82 
exhibits a BG% of 140.6%. In particular, the porosity of HSF can be 
controlled by the thickness of the sphere t, the binder radius, rb, and/or 
binder height, h. The effects of these parameters on porosity and BG% 
are summarized in Fig. 11(d). Specifically, the red line describes the 
dependency of BG% on porosity variation induced by shell thickness in 
the range of t = 0.2–1.0 (rb = 0.2, h = 6.0). When the porosity is tailored 
by thickness, BG% increases slowly at decreased porosity and the vari
ation of BG% is modest. In contrast, when porosity is tailored by 
changing the binder height, h, BG% depends strongly on the porosity, as 
shown by the large slope of the green lines (plotted with fixed rb = 2.0 
and varying h = 0.2–6.0) in Fig. 11(d). The important knowledge we 
learned based on the above parametric analysis is: first, the band gap 
width of HSFs can either increase or decrease as a function of porosity, 
which depends on the tailored design parameter; second, high porosity 
and wide bandgap can be achieved simultaneously in HSFs. 

Compared to HSFs packed in BCC lattice, HSFs with SC and FCC 
packings possess a similar wave propagation characteristic. The band 
diagrams of the HSF arranged in SC and FCC lattices are shown in 
Fig. S7. The geometric parameters are set to be the same as BCC HSF 
shown in Fig. 11(b). Compared to the BCC HSF, the maximum band gaps 
are also between 6th and 7th modes and the band gap width is also 
around 140%, suggesting a similar band gap formation mechanism. 
Thus, the parametric analysis discussed above for BCC HSFs can be 
applied to HSFs arranged in SC and FCC lattices as well. 

Finally, we note that although HSF provides a promising design motif 
for achieving multiple desired functions, some limitations should be 
noted. First, its manufacturing is challenging, as the enclosed hollow 
cells cannot be directly produced by 3D printing. Second, the enclosed 
hollow spheres may form residual stresses if the HSF experiences a 
temperature change that affects the pressure inside the spheres. Third, 
reducing manufacturing defects is also important to acquire the pre
dicted properties. In further studies, developing new fabrication tech
niques that enable direct production of HSF with minimized defects is 
highly desired. 

4. Conclusions 

We have showed a general approach to study the direction- 
dependent static mechanical properties and the dynamic wave propa
gation properties of lattice materials by combining numerical simula
tions and theoretical analysis. Explicit formulas are derived to present 
the elastic constants of cubic materials in arbitrary loading directions. 
Stereographic projections are demonstrated as a feasible way to present 
the anisotropic profiles of shear modulus and Poisson’s ratio. The band 
diagram further provides a depiction of the direction-dependent wave 
propagation properties of lattice materials. The developed method can 
be applied to cubic symmetric materials and also extended to materials 
with other symmetries. 

Using the developed approach, the anisotropic mechanical proper
ties of HSFs are studied. The design space of the elastic constants of HSFs 
is formulated analytically by a general scaling relationship. These 
scaling formulas enable the efficient design of HSFs with desired elastic 
properties and anisotropic profiles. HSFs with different anisotropic 
profiles, omnidirectional negative Poisson’s ratio, and wide band gap 
(BG% = 150%) at high porosity (0.85) are obtained by tailoring the 
geometric parameters. The developed method also enables the visuali
zation of how elastic properties vary continuously as the loading di
rection changes, opening avenues to design direction-sensitive materials 
and sensors. 

The direction-dependent properties of HSF can be combined with 
previously demonstrated functionalities of HSFs. We hope the methods 
and results reported here on HSFs can inform the design of smart porous 
and composite materials with extreme lightweight, direction-sensitivity, 
reconfigurability, programmability, and multifunctionality. 
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