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The nonwoven random fibrous network materials have been widely used in many fields due to their excellent
physical and chemical properties. To understand the mechanical behavior of these nonwoven fibrous networks, a
theoretical model is developed based on the network microstructure and microstructure evolution in the loading
process. It is revealed that the effective stiffness of nonwoven fibrous networks is not only contributed by the
fiber stretching and bending, but also depending on the rotation deformation of crosslinks between fibers. Since
the nonwoven fibrous networks are constructed by straight or curved fibers, especially at nanoscale, the cur-
vature effects on the effective stiffness are also studied systematically. Furthermore, finite element simulation is
conducted to verify the theoretical predictions on the elastic properties of nonwoven fibrous networks consisting
of straight and curved fibers, respectively. The theoretical model presented here is a general model, enabling to
capture the elastic mechanical behavior of many complex nonwoven network systems from micro to nano length

scales.

1. Introduction

The nonwoven fibrous networks constructed by randomly distrib-
uted fibers are widely observed in natural and synthetic materials at
different length scales, including silkworm cocoon, extracellular tissues
[1,2], metal nanowire networks [3,4], carbon nanotube films [5-7], and
electrospun polymer fiber mats [8,9]. Due to their unique properties,
nonwoven fibrous network materials have attracted much attention for
many applications. Since these materials are highly porous, the me-
chanical property is clearly the first task to be investigated. Experiments
have been performed to reveal the fundamental mechanics of nonwoven
networks. For example, an X-ray phase contrast imaging is used to
capture the local fibers deformation under a tensile loading test,
showing microstructure evolutions of fiber stretching, fiber bending,
and the crosslink rotation [10,11]. Computational models are also
established to study the nonwoven network mechanical behaviors
extensively. It is found that the geometrical parameters have significant
influences on the network’s mechanical properties [12-16], which
include the network volume fraction, the fiber aspect ratio (ratio of fiber
length and fiber diameter), and the fiber curvature [12,17-19]. Besides,
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a lot of efforts have been made to understand the relationship between
the network microstructure and its macroscopic mechanical response
[13,20-22]. Nonwoven networks with higher volume fraction, larger
fiber aspect ratio, and smaller fiber curvature are normally stiffer and
stronger. Although the effect of network volume fraction and fiber
aspect ratio has been well studied, the deformation mechanism of the
nonwoven networks with curved fibers, which is most likely true at
nanoscale, remains largely unexplored [23,24].

Recently, Pai et al. have introduced a stiffness ratio to express the
curvature effect on the network Young’s modulus, which is the ratio of
the curved fiber network Young’s modulus and the straight fiber
network Young’s modulus [25]. In their research, a represented volume
element (RVE) model with four fibers interacting at the same point has
been built. The stiffness ratio has been found to depend on the fiber
curvature and the average segment length in the network. Another
theoretical model has been developed based on a bilayer of triangular
truss network structure, which has six or more fibers interacting at the
same point [26]. It describes the network’s microstructural evolution
and macro elastic—plastic behavior with large deformation. However,
from their scanning electron microscope images, only two fibers are
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observed to interact at the same point. Apart from the numerical and
theoretical studies with RVE models, a simple cantilever beam model
has been created to investigate the stiffness of nonwoven networks with
straight fibers [27]. In this model, the effective network Young’s
modulus is described as the average Young’s modulus of segments in all
orientations. In this way, the random distribution nature of all fibers is
well expressed. The average segment length is considered as the beam
length, which corresponds to the network volume fraction and covers
the network topological properties. However, the network stiffness
prediction using this model is larger than those obtained from the
experimental measurements, given that only fiber stretching deforma-
tion is considered. Clearly, the bending deformation of fibers also plays a
significant role during macroscopic deformation of the nonwoven net-
works. Besides the bending, another important parameter that in-
fluences the network stiffness is the fiber crosslink stiffness. To identify
the crosslinks and the projected intersections, 2.5D and 3D models have
been developed for multiple layers of networks, and only the fibers that
are close enough to each other in the thickness direction are considered
to count as a crosslink [28-30]. Another way to identify the crosslink
number is to adjust the percentage of the effective cross links from ex-
periments to simulations [31,32]. In all those works, the crosslink is
considered as two types, either rigid connected or not connected. A
model for a flexible connection is still in need. Besides, the crosslink
properties for the carbon nanotube network is found to be related to the
binder properties and can lead to very different network behaviors [5].
Therefore, it is urgent to develop a theoretical model which can reflect
the crosslink conditions of the nonwoven networks.

In this study, we develop theoretical models for the mechanics of
nonwoven networks constructed by straight fibers or curved fibers,
where the local fiber bending and crosslink rotation are also considered.
A rotating crosslink model (RCLM) is built to investigate the effective
stiffness of nonwoven fiber networks. Parametric studies are performed
to study the effects of crosslink rotational stiffness and fiber curvature on
the macroscopic properties. Moreover, a representative volume element
based finite element model with long fibers is used to validate the
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2. Theoretical model for the elastic property of nonwoven
fibrous networks

For the nonwoven network constructed by randomly distributed fi-
bers, the network local deformations under tension are found to involve
fiber stretching, fiber bending, and crosslink rotation (Fig. 1(a)) [13]. To
capture all of these, a RCLM is developed on a single fiber segment with
a rotational crosslink for straight fiber networks and curved fiber net-
works, respectively (Fig. 1(b-c)). Considering the random distribution of
fiber orientations in the network, the macroscopic effective Young’s
modulus can be expressed as

L E.(a)da
Ji da
where « is the angle between a fiber segment orientation and the hori-

zontal direction, and E, () is the equivalent Young’s modulus of the fiber
segment [15].

E, = (@D)]

2.1. RCLM for network with straight fibers

In the random nonwoven network consisting of straight fibers, a
RCLM is built based on a straight beam segment with a loading force F
applied on the right end, and the left end is rotationable with a rotational
stiffness k. (Fig. 1(b)). The length of the beam is the average segment
length [ in the network. Considering the network as a 2D one-layer
material, the network thickness is the same as the fiber diameter. The
fiber length per unit area can be calculated as p = NL/L;L,, where L;
and L, are the length and width of the network domain area, N is the
number of fibers in the network domain area, and L is the average length
of a single fiber. According to the Corte-Kallmes theory [33], . = 7/2p.
Then [, here can be expressed as
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Fig. 1. (a) The deformation of a nonwoven random network under uniaxial tension, where fiber stretching, fiber bending, and crosslink rotation are observed. (b)
Rotating crosslink model with a straight fiber. (c) Rotating crosslink model with a curved fiber. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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I, = nL,L,/2NL. ()]
The moment due to the applied force can be expressed as

M = Fsin(a)l, = k.-f, )

where f is the corresponding rotation angle of the beam about origin O.
The axial stretching displacement of the beam can be obtained as

Feos(a)l.

Al=
EA

4

where E; is the Young’s modulus of a single fiber, and A is the fiber cross
section area. The deflection of the beam is defined by the Euler beam
theory, and the deflection of the right end of the beam can be calculated
as

Fsin(a)l?

W(lc) = 3Ef[

+ple, (5)

where I is the moment of inertia. Therefore, the displacement of the
loading end along the x direction can be expressed as

u, = Alcos(a) +w(l,)sin(a). (6)

And the equivalent Young’s modulus of the segment with a given
orientation a can be obtained as

Fl.cos(a)

Ee(@) = u,-A/cos(a)

)
Then, applying a small loading force, the effective network Young’s
modulus can be obtained via Eq. (1).

2.2. RCLM for network with curved fibers

Due to large aspect ratio, microfibers and nanofibers are easily seen
to have curvatures under many constraints during the fabrication and
manufacturing process. The RCLM considering curved fiber networks is
indicated in Fig. 1(c). The curved beam model here is in an arc shape
with its length of I, and the initial radius of Ry. Then the initial center
angle of the fiber segment is 6y = . /Ro. At a distance of s from the fixed
end, the bending moment applied on the beam is [34]

M = Fly(le) = y(s)]- ®)

The rotation angle can be solved via
L0\ . 0
M = -k, = F-2Rysin (§> -sin (a + §>7 (C))

where 6 is the current center angle of the fiber segment. And the cur-
vature of the beam can be given as

o 1 Fhy()—

do _ 1 Fly() =y(s)] 10)

ds R() Ef[
Taking into account of the geometrical relation

Z—i:xin(afﬂ+9), an
Eq. (10) can be differentiated with respect to s as

2 F F
d0_F dy =—sin(a —p+0). 12)

dZ EfI ds Ef[

Set 0, as the center angle of the deformed curved beam segment, after
integrating, the curvature can be expressed as

deo 1 F
= R—g E/I [cos(a — B+ 0) — cos(a — f+ 04)]. (13)

Considering the beam here is also extensible, the differential normal
extension is
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F ———cos(a — B+ 0)]ds. 14

ds=1[1+
EfA

Then the initial length of the curved beam [, can be expressed as

le le
Il = dsy = ——————ds. 1
/ fo = / 1 +—cos a— ﬁ+9) as

Substituting Eq. (13), it shows

% 1 1
l(.:/ : do.
o 1+E/LAC()S((X*/}+9) \/éf%[cos(afﬂ+9) —cos(a—f+64)]
(16)

Given the value of a, the deformed center angle 6; can be solved
numerically. Note that the displacement of the loading end in the x
direction is

u, = x(1) — x(ly), a7

where x(I) is the horizontal coordinate of the deformed beam end, which
is given by

x(l) = /0 cos(a — p+0)-ds

Oa —
_ / cos(a—p+0) " a8)
R‘Tg) — 2£ [cos(a B+ 0) — cos(a— p+6,)]

x(lp) is the horizontal coordinate of the initial beam end,

6 [
x(lh) = 2R0sin(§)cos((x + 5) 19

Therefore, the equivalent Young’s modulus of the segment with
orientation of a can be expressed as

F'.X(l())

Ee(@) = u,-A/cos(a)

(20)

Then the effective Young’s modulus for the whole network can be
solved numerically with Eq. (1). Note that because the beam shape is no
longer symmetric about its original axial direction, a larger integration
range, [—% —2 —% + 1], for a should be used.

For networks with curved fibers, the I, evaluation is different from
that for networks with straight fibers. For networks with straight fibers,
two interacted fibers only have one interaction point, while one or two
interaction points are possible for two interacted fibers in networks with
curved fibers. It is expected that the connection between fibers with two
interaction points is enhanced. However, the connection between the
local fiber to the overall network is cut down [18]. Therefore, the
average segment length should be adjusted in networks with curved
fibers.

To solve the average segment length of curved fibers, the probability
of two arcs interacting P needs to be evaluated. From the geometry, the
first step is to solve the interacting probability of two circles, and the
second step is to solve the arcs interacting probability in these two cir-
cles. Assuming these two arcs have same length and curvature, the two
circles containing these two arcs have the same radius of R, as shown in
Fig. 2 (a). Given a solid-line circle in a domain area of L; x Ly, the dash-
line circle can interact with the solid-line circle when the center point of
the dash-line circle locates within the orange area, which is a circle with
a radius of 2R. The probability of two circles intersecting is

7-(2R)?
LiL

P, = 21

If 6, is the center angle of the arc and 6, is the center angle of the
intersection part of two circles, there will be two cases to evaluate the
arcs intersecting conditions: (a) 6, < 6;,, and there exists only one
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Fig. 2. Schematic diagram of the probability of two arcs in-plane interacting with each other. (a) Domain area, (b) case 6, < 6, and (c) case 6,>0;,. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

intersection, b) 6,>6;,, there exist one or two intersections. For case (a)
(Fig. 2(b)), two arcs can interact at either point A or point B. The
probability for two arc intersecting is

P =2 (%) g (22)

For case (b) (Fig. 2(c)), the two points interacting is over counting,
comparing with case (a). And the adjusted probability for two arc
interacting is

a2 (05

The expectation of the distance between the centers of these two
interacting circles is

I J 2R-dido R

(©2))
JiT2R-d0

=

Clearly, the expectation for 6, is z/3. Therefore, the probability of
two are interacting can be expressed as

_ [ PPy (0, < 7/3);
P= {PIP% (0.27/3). (25)

Since the number of crosslinks on one fiber is NP, the average
segment length can be calculated as [, = L/(NP+ 1).

3. Finite element method simulation

Finite element (FE) simulations are introduced to verify the theo-
retical results, with a representative volume element (RVE) model [13].
In the model, fibers with the same length and diameter are initially built
with a uniform distribution in a plane with ABAQUS scripting via Py-
thon. All fibers are firstly generated with their middle point on the
center of the RVE area, and then each fiber is rotated and transported by
a random angle and a random vector, respectively. Finally, the fiber
segments beyond the RVE boundary are cut and moved back to the
opposite inside. In this way, a network with random fiber orientation
and distribution is generated. The FE simulations are conducted via a
commercial finite element package ABAQUS/Explicit quasi-static
method (Simulia, Provindence, RI). Strain controlled periodic bound-
ary conditions (PBCs) are applied to the surface of RVE, and the RVE
deforms in a periodically repeating manner without any overlaps or
cavities.

To gain the averaged results in the FE simulations, five networks with
same network density and curvature are simulated. In both theoretical
predictions and the FE simulations, the material property of fiber is
considered as fiber Young’s modulus of Ef = 4100 MPa, Poison’s ratio
of v = 0.4. Considering the effective/average property is under study, to
simplify the problem, all fibers have the same length and same diameter,
and curved fibers have the same curvature radius.

4. Results and discussions
4.1. Effective stiffness of nonwoven networks with straight fibers

Fig. 3(a) shows normalized Young’s modulus (E,/E;) of nonwoven
fiber networks with fiber volume fraction from 0.05 to 0.25, where
different model predictions, FE simulation results, and experimental
results are compared. It’s clear that normalized network Young’s
modulus increases as the fiber volume fraction increases, which is
captured by all theoretical models. A simplified analytical model that
neglects the bending deformation of fibers always over predicts the re-
sults than experiments and simulations (see Yin et al. [27]). If the
bending deformation of fibers is considered, the prediction is signifi-
cantly smaller, as shown by the red solid line of current RCLM with k;; =
oo. This means the rotational stiffness of crosslinks is infinite, and in
other words, only fiber bending and stretching are considered. Since this
is still over constrained, this red line predicted by the RCLM presents
larger estimations of the network stiffness than the results from simu-
lations and experiments. It also indicates that besides the bending and
the stretching deformation, there is another deformation mechanism,
which is the crosslink rotation that observed in the microstructure,
having unneglectable contribution to the network effective stiffness.
Such intrinsic degree of freedom is presented by the rotational spring in
the RCLM. By adjusting k., it is possible to accurately predict the
network stiffness obtained by simulations and experiments. For
example, when k. = 1.3 x 10~°Num/rad, the effective stiffness the PA6
network measured from the tensile experiment [26] can be captured
precisely, as shown in Fig. 3(a). Two curves with larger k. are also
plotted to provide better estimations for experimental measurements of
networks with larger fiber volume fraction. Note that the value of
rotational stiffness k. of crosslinks is determined by the connection of the
joints between fibers during the material fabrication process. As
kcincreases, the network stiffness can be enhanced dramatically, which
is consistent with the molecular dynamic study on the improvement of
the carbon nanotube network stiffness [5]. In FE simulations, rigid
connections are assumed for all crosslinks between fibers, indicating the
simulation results are the upper bound of experimental measurements.
This is also clearly demonstrated in Fig. 3(a), where FE simulation re-
sults are larger than experimental data points at the same fiber volume
fraction. Another reason leading to the difference between experimental
results and simulation results is that fibers in the FE model are assumed
to have uniform length and diameter. However, in the realistic experi-
mental samples fiber length and diameter will vary based on different
fabrication conditions and processes. Here, the FE model only presents
the average value of these geometric parameters.

To have a better understanding how the k. influences the network
effective stiffness, the normalized network Young’s modulus as a func-
tion of k. is plotted in Fig. 4(a) for three different fiber volume fractions.
When k. is small, the network is hardly to carry any load because
rotation leads to deformation easily. When k, is larger, the network
stiffness can be enhanced dramatically until approaching the dashed
lines, corresponding to the cases where no crosslink rotation is allowed,
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Fig. 3. (a) The normalized effective stiffness of fiber networks as a function of fiber volume fraction: k;; = o0, kez = 3.1 x 107*Num/rad, ki3 = 1.5 x 10~*Num/rad,
and k;s = 1.3 x 107°Num/rad. (b) 2 representative nonwoven fiber networks with different fiber volume fractions. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

—

Qb

—

0.08 T T T T T T
—f,=9.42%
—f = 14.14%
—f =18.18%

0.06

0.04

0.02

Normalized Young's Modulus (E,,/ E;)

0.00
10"

107 10"

k. (Num/rad)

10°

K, (Num/rad)

4x10™ - - -
® k.
—— power fit
3F .
.
2 - -
*
1 .
.
0 1 1 1
0.05 0.10 0.15 0.20 0.25

Volume fraction

Fig. 4. (a) The network normalized Young’s modulus as a function of k. for networks with volume fractions of 9.42%, 14.14%, and 18.85%. (b) The rotational
stiffness k. as a function of fiber volume fraction in RCLM prediction. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

i.e. k,—oo. This result indicates that when k.is larger than certain values
(10~2Num/rad here), enhancing the rotational stiffness of crosslinks
won’t be able to improve the effective network Young’s modulus.

The rotational stiffness of crosslinks can also be affected by the fiber
volume fraction in the network. It’s clear that larger volume fraction or
denser material distribution will limit the rotation of crosslinks and
provide more resistance because of the shorter average segments (see
Fig. 3(b)). Therefore, a larger rotational stiffness k. is needed to predict
the effective network stiffness when the fiber volume fraction is
increased. To quantitatively show the relationship between k. and f,, a
power function is used to fit the simulation results as

ke =C+CofS (26)
with C; = 1.07 x 10~°Num/rad, C> = 7.13 x 102Num/rad, and C3 =
3.51 respectively. This result agrees well with the FE simulation as
shown in Fig. 4(b).

All these results indicate that introducing the fiber bending and
crosslink rotating in the theoretical model can provide better estima-
tions of the effective network stiffness of nonwoven random network
structures, which is consistent with the deformation mechanisms
observed in microstructure evolution under loading conditions. It

should be noted that the accurate value of rotational stiffness of cross-
links is hard to be determined through experimental tests. More struc-
ture characterization might be needed for the experimental samples. It is
expected the theoretical model presented here can be extended as a
universal theoretical model that can be applied to other types of net-
works and cellular materials.

4.2. Effective stiffness of nonwoven networks with curved fibers

Fig. 5 shows the contours of RCLM predictions of network normal-
ized Young’s modulus for fiber volume fraction f, varying from 9.42% to
18.85% at a given k., and the fiber center angle L/R, varies from 0.4 to
3. It is clear that the network stiffness always increases as f, increases,
which is consistent with FE simulation results. However, the L/R effect
is not significant until its value is larger than z/3. When the center angle
is larger, the normalized Young’s modulus decreases as the center angle
increases.

The predictions from our RCLM are compared with results from a
theoretical model of Pai et al. [25] and FE simulations. In both theo-
retical models, the normalized network Young’s modulus is only
dependent on the fiber volume fraction and the fiber center angle. Fig. 6
presents the comparison of different modulus predictions for the case
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Fig. 5. The normalized Young’s modulus of the nonwoven network as a
function of f, and L/Ry when k, = 1.5 x 10’4Nﬂm/rad. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

that the fiber volume fraction is 18.85% and k, = 2.14 x 10~°Num/rad.
To have a better understanding of the fiber curvature effect, a stiffness
ratio is introduced here, which is the ratio of the curved fiber network
stiffness and the straight fiber network stiffness. Clearly,
whenL/Ro<n/3, the stiffness ratio predictions are almost the same and
equals to ~1. This indicates that the theoretical models with straight
fibers are applicable to networks with slightly curved fibers. However,
the stiffness ratio predicted from both models starts to decrease
dramatically when L/Ry > 7/3, which is consistent with FE simulation
results. When L/Rg = 2.0, the effective network stiffness is reduced up to
15% in this case. Note that the RCLM is more sensitive to the fiber
curvature, giving a smaller stiffness ratio at a largerL/Ry, providing
better estimation as compared to FE simulation results.

In the theoretical model of Pai et al. [25], four fibers interact at one
crosslink, while practically there are only two fibers interacting at same
joints in most cases. This will introduce extra constraints on the fibers
and limit the fiber reorientation under loading, leading to a higher
stiffness prediction. Moreover, the model introduces the curved fiber in
an antisymmetric way, and two ending points and the middle point of
the fiber are always on the same line, which can reduce the deflection of
the beam structure, and further reduce the curvature effect. Note that
RCLM predictions are closer to the FE simulation results, but still larger.
Considering two end segments of any fiber in the FE model are free of
loading and do not contribute to load carrying, it is reasonable to see
RCLM overestimates the stiffness a bit in which all the fiber segments are
assumed to be effective.
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Fig. 7 shows the RCLM results on the effect of crosslink rotational
stiffness k.on the normalized Young’s modulus of nonwoven fibrous
networks consisting of curved fibers. Similar to the case of straight fi-
bers, as k. increases, the normalized Young’s modulus increases up to a
steady value when k. > 10~2Num/rad. When the curvatures of fibers are
different, all results demonstrate a similar trend. Clearly, k. is one of the
most important parameters that dominate the effective stiffness of the
nonwoven networks. Here, two volume fractions, f, = 9.42% and f, =
18.85% are also compared. If the stiffness ratio is calculated for
different curvatures, it is found that the stiffness ratio for networks with
lower volume fraction is more sensitive to the fiber curvature. Because
lower volume fraction in the network results in greater average segment
length, to increase the fiber curvature will more likely weaken the
connections between fiber segments, leading to a weaker response of the
network. This also indicates that k. is smaller for the network where
fibers are severely curved.

0.10 T T T T T T
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Fig. 7. RCLM prediction of the effect of crosslink rotational stiffness on the
normalized Young’s modulus of nonwoven fibrous networks consisting of
straight fibers or curved fibers. Volume fractions of 9.42% and 18.85% are
considered. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. The curvature effect on the network normalized Young’s modulus. (a) The stiffness ratio comparing the results from RCLM model, model by Pai et al. [25],
and FE simulations. (b) The corresponding nonwoven fiber networks with different L/R, in FE simulations. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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5. Conclusions

In summary, to make a comprehensive understanding on the effec-
tive stiffness of random nonwoven fibrous networks consisting of
straight fibers or curved fibers, a theoretical model based on beam
theory and network microstructure (RCLM) is developed. It is revealed
that the fiber stretching, fiber bending, and crosslink rotation defor-
mation can significantly affect the effective mechanical response of
nonwoven fibrous networks. It also suggests that enhancing the rota-
tional stiffness of crosslinks between fibers is an effective way to
improve the mechanical properties of nonwoven fibrous networks.
Furthermore, the RCLM shows that when the fiber center angle is
smaller than 7/3, the fiber curvature has a negligible effect on the
effective stiffness of the network. However, when the center angle is
larger than z/3, the network stiffness can be reduced dramatically.
These results are validated by the FE simulations. The model presented
here provides a solid theoretical foundation for the design, optimization,
and property prediction of randomly distributed nonwoven fibrous
networks. However, there are still unrevealed factors, such as the
strength of crosslinks and van der Waals interactions, that are not
considered in this work and will be highlighted in our future work.
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