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A B S T R A C T   

The nonwoven random fibrous network materials have been widely used in many fields due to their excellent 
physical and chemical properties. To understand the mechanical behavior of these nonwoven fibrous networks, a 
theoretical model is developed based on the network microstructure and microstructure evolution in the loading 
process. It is revealed that the effective stiffness of nonwoven fibrous networks is not only contributed by the 
fiber stretching and bending, but also depending on the rotation deformation of crosslinks between fibers. Since 
the nonwoven fibrous networks are constructed by straight or curved fibers, especially at nanoscale, the cur
vature effects on the effective stiffness are also studied systematically. Furthermore, finite element simulation is 
conducted to verify the theoretical predictions on the elastic properties of nonwoven fibrous networks consisting 
of straight and curved fibers, respectively. The theoretical model presented here is a general model, enabling to 
capture the elastic mechanical behavior of many complex nonwoven network systems from micro to nano length 
scales.   

1. Introduction 

The nonwoven fibrous networks constructed by randomly distrib
uted fibers are widely observed in natural and synthetic materials at 
different length scales, including silkworm cocoon, extracellular tissues 
[1,2], metal nanowire networks [3,4], carbon nanotube films [5–7], and 
electrospun polymer fiber mats [8,9]. Due to their unique properties, 
nonwoven fibrous network materials have attracted much attention for 
many applications. Since these materials are highly porous, the me
chanical property is clearly the first task to be investigated. Experiments 
have been performed to reveal the fundamental mechanics of nonwoven 
networks. For example, an X-ray phase contrast imaging is used to 
capture the local fibers deformation under a tensile loading test, 
showing microstructure evolutions of fiber stretching, fiber bending, 
and the crosslink rotation [10,11]. Computational models are also 
established to study the nonwoven network mechanical behaviors 
extensively. It is found that the geometrical parameters have significant 
influences on the network’s mechanical properties [12–16], which 
include the network volume fraction, the fiber aspect ratio (ratio of fiber 
length and fiber diameter), and the fiber curvature [12,17–19]. Besides, 

a lot of efforts have been made to understand the relationship between 
the network microstructure and its macroscopic mechanical response 
[13,20–22]. Nonwoven networks with higher volume fraction, larger 
fiber aspect ratio, and smaller fiber curvature are normally stiffer and 
stronger. Although the effect of network volume fraction and fiber 
aspect ratio has been well studied, the deformation mechanism of the 
nonwoven networks with curved fibers, which is most likely true at 
nanoscale, remains largely unexplored [23,24]. 

Recently, Pai et al. have introduced a stiffness ratio to express the 
curvature effect on the network Young’s modulus, which is the ratio of 
the curved fiber network Young’s modulus and the straight fiber 
network Young’s modulus [25]. In their research, a represented volume 
element (RVE) model with four fibers interacting at the same point has 
been built. The stiffness ratio has been found to depend on the fiber 
curvature and the average segment length in the network. Another 
theoretical model has been developed based on a bilayer of triangular 
truss network structure, which has six or more fibers interacting at the 
same point [26]. It describes the network’s microstructural evolution 
and macro elastic–plastic behavior with large deformation. However, 
from their scanning electron microscope images, only two fibers are 
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observed to interact at the same point. Apart from the numerical and 
theoretical studies with RVE models, a simple cantilever beam model 
has been created to investigate the stiffness of nonwoven networks with 
straight fibers [27]. In this model, the effective network Young’s 
modulus is described as the average Young’s modulus of segments in all 
orientations. In this way, the random distribution nature of all fibers is 
well expressed. The average segment length is considered as the beam 
length, which corresponds to the network volume fraction and covers 
the network topological properties. However, the network stiffness 
prediction using this model is larger than those obtained from the 
experimental measurements, given that only fiber stretching deforma
tion is considered. Clearly, the bending deformation of fibers also plays a 
significant role during macroscopic deformation of the nonwoven net
works. Besides the bending, another important parameter that in
fluences the network stiffness is the fiber crosslink stiffness. To identify 
the crosslinks and the projected intersections, 2.5D and 3D models have 
been developed for multiple layers of networks, and only the fibers that 
are close enough to each other in the thickness direction are considered 
to count as a crosslink [28–30]. Another way to identify the crosslink 
number is to adjust the percentage of the effective cross links from ex
periments to simulations [31,32]. In all those works, the crosslink is 
considered as two types, either rigid connected or not connected. A 
model for a flexible connection is still in need. Besides, the crosslink 
properties for the carbon nanotube network is found to be related to the 
binder properties and can lead to very different network behaviors [5]. 
Therefore, it is urgent to develop a theoretical model which can reflect 
the crosslink conditions of the nonwoven networks. 

In this study, we develop theoretical models for the mechanics of 
nonwoven networks constructed by straight fibers or curved fibers, 
where the local fiber bending and crosslink rotation are also considered. 
A rotating crosslink model (RCLM) is built to investigate the effective 
stiffness of nonwoven fiber networks. Parametric studies are performed 
to study the effects of crosslink rotational stiffness and fiber curvature on 
the macroscopic properties. Moreover, a representative volume element 
based finite element model with long fibers is used to validate the 

theoretical predictions. 

2. Theoretical model for the elastic property of nonwoven 
fibrous networks 

For the nonwoven network constructed by randomly distributed fi
bers, the network local deformations under tension are found to involve 
fiber stretching, fiber bending, and crosslink rotation (Fig. 1(a)) [13]. To 
capture all of these, a RCLM is developed on a single fiber segment with 
a rotational crosslink for straight fiber networks and curved fiber net
works, respectively (Fig. 1(b–c)). Considering the random distribution of 
fiber orientations in the network, the macroscopic effective Young’s 
modulus can be expressed as 

En =

∫ π
2
0 Ee(α)dα
∫ π

2
0 dα

(1)  

where α is the angle between a fiber segment orientation and the hori
zontal direction, and Ee(α) is the equivalent Young’s modulus of the fiber 
segment [15]. 

2.1. RCLM for network with straight fibers 

In the random nonwoven network consisting of straight fibers, a 
RCLM is built based on a straight beam segment with a loading force F 
applied on the right end, and the left end is rotationable with a rotational 
stiffness kc (Fig. 1(b)). The length of the beam is the average segment 
length lc in the network. Considering the network as a 2D one-layer 
material, the network thickness is the same as the fiber diameter. The 
fiber length per unit area can be calculated as ρ = NL/L1L2, where L1 
and L2 are the length and width of the network domain area, N is the 
number of fibers in the network domain area, and L is the average length 
of a single fiber. According to the Corte-Kallmes theory [33], lc = π/2ρ. 
Then lc here can be expressed as 
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Fig. 1. (a) The deformation of a nonwoven random network under uniaxial tension, where fiber stretching, fiber bending, and crosslink rotation are observed. (b) 
Rotating crosslink model with a straight fiber. (c) Rotating crosslink model with a curved fiber. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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lc = πL1L2/2NL. (2) 

The moment due to the applied force can be expressed as 

M = Fsin(α)lc = kc⋅β, (3)  

where β is the corresponding rotation angle of the beam about origin O. 
The axial stretching displacement of the beam can be obtained as 

Δl =
Fcos(α)lc

Ef A
, (4)  

where Ef is the Young’s modulus of a single fiber, and A is the fiber cross 
section area. The deflection of the beam is defined by the Euler beam 
theory, and the deflection of the right end of the beam can be calculated 
as 

w(lc) =
Fsin(α)l3

c

3Ef I
+ βlc, (5)  

where I is the moment of inertia. Therefore, the displacement of the 
loading end along the x direction can be expressed as 

ux = Δlcos(α)+w(lc)sin(α). (6) 

And the equivalent Young’s modulus of the segment with a given 
orientation α can be obtained as 

Ee(α) =
F⋅lccos(α)

ux⋅A/cos(α). (7) 

Then, applying a small loading force, the effective network Young’s 
modulus can be obtained via Eq. (1). 

2.2. RCLM for network with curved fibers 

Due to large aspect ratio, microfibers and nanofibers are easily seen 
to have curvatures under many constraints during the fabrication and 
manufacturing process. The RCLM considering curved fiber networks is 
indicated in Fig. 1(c). The curved beam model here is in an arc shape 
with its length of lc and the initial radius of R0. Then the initial center 
angle of the fiber segment is θ0 = lc/R0. At a distance of s from the fixed 
end, the bending moment applied on the beam is [34] 

M = F[y(lc) − y(s)]. (8) 

The rotation angle can be solved via 

M = β⋅kc = F⋅2R0sin
(θ

2

)
⋅sin

(
α +

θ
2

)
, (9)  

where θ is the current center angle of the fiber segment. And the cur
vature of the beam can be given as 

dθ
ds

=
1
R0

−
F[y(lc) − y(s)]

Ef I
. (10) 

Taking into account of the geometrical relation 

dy
ds

= sin(α − β + θ), (11) 

Eq. (10) can be differentiated with respect to s as 

d2θ
d2s

=
F

Ef I
dy
ds

=
F

Ef I
sin(α − β + θ). (12) 

Set θd as the center angle of the deformed curved beam segment, after 
integrating, the curvature can be expressed as 

dθ
ds

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
R2

0
−

2F
Ef I

[cos(α − β + θ) − cos(α − β + θd)]

√

. (13) 

Considering the beam here is also extensible, the differential normal 
extension is 

ds = [1 +
F

Ef A
cos(α − β + θ)]ds0. (14) 

Then the initial length of the curved beam lc can be expressed as 

lc =

∫ lc

0
ds0 =

∫ lc

0

1
1 + F

Ef Acos(α − β + θ)
ds. (15) 

Substituting Eq. (13), it shows 

lc =

∫ θd

0

1
1+ F

Ef Acos(α − β+θ)
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

R2
0
− 2F

Ef I [cos(α − β+θ) − cos(α − β+θd)]
√ dθ.

(16) 

Given the value of α, the deformed center angle θd can be solved 
numerically. Note that the displacement of the loading end in the ×
direction is 

ux = x(l) − x(l0), (17)  

where x(l) is the horizontal coordinate of the deformed beam end, which 
is given by 

x(l) =
∫ l

0
cos(α − β + θ)⋅ds

=

∫ θd

0

cos(α − β + θ)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

R2
0
− 2F

Ef I [cos(α − β + θ) − cos(α − β + θd)]
√ dθ. (18)  

x(l0) is the horizontal coordinate of the initial beam end, 

x(l0) = 2R0sin(
θ
2
)cos(α +

θ
2
). (19) 

Therefore, the equivalent Young’s modulus of the segment with 
orientation of α can be expressed as 

Ee(α) =
F⋅x(l0)

ux⋅A/cos(α). (20) 

Then the effective Young’s modulus for the whole network can be 
solved numerically with Eq. (1). Note that because the beam shape is no 
longer symmetric about its original axial direction, a larger integration 
range, [ − θ0

2 − π
2, −

θ0
2 + π

2], for α should be used. 
For networks with curved fibers, the lc evaluation is different from 

that for networks with straight fibers. For networks with straight fibers, 
two interacted fibers only have one interaction point, while one or two 
interaction points are possible for two interacted fibers in networks with 
curved fibers. It is expected that the connection between fibers with two 
interaction points is enhanced. However, the connection between the 
local fiber to the overall network is cut down [18]. Therefore, the 
average segment length should be adjusted in networks with curved 
fibers. 

To solve the average segment length of curved fibers, the probability 
of two arcs interacting P needs to be evaluated. From the geometry, the 
first step is to solve the interacting probability of two circles, and the 
second step is to solve the arcs interacting probability in these two cir
cles. Assuming these two arcs have same length and curvature, the two 
circles containing these two arcs have the same radius of R, as shown in 
Fig. 2 (a). Given a solid-line circle in a domain area of L1 × L2, the dash- 
line circle can interact with the solid-line circle when the center point of 
the dash-line circle locates within the orange area, which is a circle with 
a radius of 2R. The probability of two circles intersecting is 

P1 =
π⋅(2R)2

L1L2
. (21) 

If θa is the center angle of the arc and θin is the center angle of the 
intersection part of two circles, there will be two cases to evaluate the 
arcs intersecting conditions: (a) θa < θin, and there exists only one 
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intersection, b) θa⩾θin, there exist one or two intersections. For case (a) 
(Fig. 2(b)), two arcs can interact at either point A or point B. The 
probability for two arc intersecting is 

P2a = 2
(θa

2π

)2
. (22) 

For case (b) (Fig. 2(c)), the two points interacting is over counting, 
comparing with case (a). And the adjusted probability for two arc 
interacting is 

P2b = 2
(θa

2π

)2
−
(θa − θin

2π

)2
. (23) 

The expectation of the distance between the centers of these two 
interacting circles is 

t =
∫ 2π

0

∫ 2R
0 2R⋅dtdθ

∫ 2π
0 2R⋅dθ

= R. (24) 

Clearly, the expectation for θin is π/3. Therefore, the probability of 
two are interacting can be expressed as 

P =

{
P1P2a
P1P2b

(θa < π/3);
(θa⩾π/3). (25) 

Since the number of crosslinks on one fiber is NP, the average 
segment length can be calculated as lc = L/(NP+ 1). 

3. Finite element method simulation 

Finite element (FE) simulations are introduced to verify the theo
retical results, with a representative volume element (RVE) model [13]. 
In the model, fibers with the same length and diameter are initially built 
with a uniform distribution in a plane with ABAQUS scripting via Py
thon. All fibers are firstly generated with their middle point on the 
center of the RVE area, and then each fiber is rotated and transported by 
a random angle and a random vector, respectively. Finally, the fiber 
segments beyond the RVE boundary are cut and moved back to the 
opposite inside. In this way, a network with random fiber orientation 
and distribution is generated. The FE simulations are conducted via a 
commercial finite element package ABAQUS/Explicit quasi-static 
method (Simulia, Provindence, RI). Strain controlled periodic bound
ary conditions (PBCs) are applied to the surface of RVE, and the RVE 
deforms in a periodically repeating manner without any overlaps or 
cavities. 

To gain the averaged results in the FE simulations, five networks with 
same network density and curvature are simulated. In both theoretical 
predictions and the FE simulations, the material property of fiber is 
considered as fiber Young’s modulus of Ef = 4100 MPa, Poison’s ratio 
of ν = 0.4. Considering the effective/average property is under study, to 
simplify the problem, all fibers have the same length and same diameter, 
and curved fibers have the same curvature radius. 

4. Results and discussions 

4.1. Effective stiffness of nonwoven networks with straight fibers 

Fig. 3(a) shows normalized Young’s modulus (En/Ef ) of nonwoven 
fiber networks with fiber volume fraction from 0.05 to 0.25, where 
different model predictions, FE simulation results, and experimental 
results are compared. It’s clear that normalized network Young’s 
modulus increases as the fiber volume fraction increases, which is 
captured by all theoretical models. A simplified analytical model that 
neglects the bending deformation of fibers always over predicts the re
sults than experiments and simulations (see Yin et al. [27]). If the 
bending deformation of fibers is considered, the prediction is signifi
cantly smaller, as shown by the red solid line of current RCLM with kc1 =

∞. This means the rotational stiffness of crosslinks is infinite, and in 
other words, only fiber bending and stretching are considered. Since this 
is still over constrained, this red line predicted by the RCLM presents 
larger estimations of the network stiffness than the results from simu
lations and experiments. It also indicates that besides the bending and 
the stretching deformation, there is another deformation mechanism, 
which is the crosslink rotation that observed in the microstructure, 
having unneglectable contribution to the network effective stiffness. 
Such intrinsic degree of freedom is presented by the rotational spring in 
the RCLM. By adjusting kc, it is possible to accurately predict the 
network stiffness obtained by simulations and experiments. For 
example, when kc = 1.3× 10− 5Nμm/rad, the effective stiffness the PA6 
network measured from the tensile experiment [26] can be captured 
precisely, as shown in Fig. 3(a). Two curves with larger kc are also 
plotted to provide better estimations for experimental measurements of 
networks with larger fiber volume fraction. Note that the value of 
rotational stiffness kc of crosslinks is determined by the connection of the 
joints between fibers during the material fabrication process. As 
kcincreases, the network stiffness can be enhanced dramatically, which 
is consistent with the molecular dynamic study on the improvement of 
the carbon nanotube network stiffness [5]. In FE simulations, rigid 
connections are assumed for all crosslinks between fibers, indicating the 
simulation results are the upper bound of experimental measurements. 
This is also clearly demonstrated in Fig. 3(a), where FE simulation re
sults are larger than experimental data points at the same fiber volume 
fraction. Another reason leading to the difference between experimental 
results and simulation results is that fibers in the FE model are assumed 
to have uniform length and diameter. However, in the realistic experi
mental samples fiber length and diameter will vary based on different 
fabrication conditions and processes. Here, the FE model only presents 
the average value of these geometric parameters. 

To have a better understanding how the kc influences the network 
effective stiffness, the normalized network Young’s modulus as a func
tion of kc is plotted in Fig. 4(a) for three different fiber volume fractions. 
When kc is small, the network is hardly to carry any load because 
rotation leads to deformation easily. When kc is larger, the network 
stiffness can be enhanced dramatically until approaching the dashed 
lines, corresponding to the cases where no crosslink rotation is allowed, 

(a) (b) (c)

R2R

L1

L 2

θa

θin

θa-θin

θin

B

A

Fig. 2. Schematic diagram of the probability of two arcs in-plane interacting with each other. (a) Domain area, (b) case θa < θin, and (c) case θa⩾θin. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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i.e. kc→∞. This result indicates that when kcis larger than certain values 
(10− 2Nμm/rad here), enhancing the rotational stiffness of crosslinks 
won’t be able to improve the effective network Young’s modulus. 

The rotational stiffness of crosslinks can also be affected by the fiber 
volume fraction in the network. It’s clear that larger volume fraction or 
denser material distribution will limit the rotation of crosslinks and 
provide more resistance because of the shorter average segments (see 
Fig. 3(b)). Therefore, a larger rotational stiffness kc is needed to predict 
the effective network stiffness when the fiber volume fraction is 
increased. To quantitatively show the relationship between kc and fv, a 
power function is used to fit the simulation results as 

kc = C1 +C2⋅f C3
v (26)  

with C1 = 1.07× 10− 5Nμm/rad, C2 = 7.13× 10− 2Nμm/rad, and C3 =

3.51 respectively. This result agrees well with the FE simulation as 
shown in Fig. 4(b). 

All these results indicate that introducing the fiber bending and 
crosslink rotating in the theoretical model can provide better estima
tions of the effective network stiffness of nonwoven random network 
structures, which is consistent with the deformation mechanisms 
observed in microstructure evolution under loading conditions. It 

should be noted that the accurate value of rotational stiffness of cross
links is hard to be determined through experimental tests. More struc
ture characterization might be needed for the experimental samples. It is 
expected the theoretical model presented here can be extended as a 
universal theoretical model that can be applied to other types of net
works and cellular materials. 

4.2. Effective stiffness of nonwoven networks with curved fibers 

Fig. 5 shows the contours of RCLM predictions of network normal
ized Young’s modulus for fiber volume fraction fv varying from 9.42% to 
18.85% at a given kc, and the fiber center angle L/R0 varies from 0.4 to 
3. It is clear that the network stiffness always increases as fv increases, 
which is consistent with FE simulation results. However, the L/R0 effect 
is not significant until its value is larger than π/3. When the center angle 
is larger, the normalized Young’s modulus decreases as the center angle 
increases. 

The predictions from our RCLM are compared with results from a 
theoretical model of Pai et al. [25] and FE simulations. In both theo
retical models, the normalized network Young’s modulus is only 
dependent on the fiber volume fraction and the fiber center angle. Fig. 6 
presents the comparison of different modulus predictions for the case 

(b)(a)

fv = 18.85%fv = 14.14%

Fig. 3. (a) The normalized effective stiffness of fiber networks as a function of fiber volume fraction: kc1 = ∞, kc2 = 3.1× 10− 4Nμm/rad, kc3 = 1.5× 10− 4Nμm/rad, 
and kc4 = 1.3× 10− 5Nμm/rad. (b) 2 representative nonwoven fiber networks with different fiber volume fractions. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. (a) The network normalized Young’s modulus as a function of kc for networks with volume fractions of 9.42%, 14.14%, and 18.85%. (b) The rotational 
stiffness kc as a function of fiber volume fraction in RCLM prediction. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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that the fiber volume fraction is 18.85% and kc = 2.14× 10− 5Nμm/rad. 
To have a better understanding of the fiber curvature effect, a stiffness 
ratio is introduced here, which is the ratio of the curved fiber network 
stiffness and the straight fiber network stiffness. Clearly, 
whenL/R0⩽π/3, the stiffness ratio predictions are almost the same and 
equals to  ~1. This indicates that the theoretical models with straight 
fibers are applicable to networks with slightly curved fibers. However, 
the stiffness ratio predicted from both models starts to decrease 
dramatically when L/R0 > π/3, which is consistent with FE simulation 
results. When L/R0 = 2.0, the effective network stiffness is reduced up to 
15% in this case. Note that the RCLM is more sensitive to the fiber 
curvature, giving a smaller stiffness ratio at a largerL/R0, providing 
better estimation as compared to FE simulation results. 

In the theoretical model of Pai et al. [25], four fibers interact at one 
crosslink, while practically there are only two fibers interacting at same 
joints in most cases. This will introduce extra constraints on the fibers 
and limit the fiber reorientation under loading, leading to a higher 
stiffness prediction. Moreover, the model introduces the curved fiber in 
an antisymmetric way, and two ending points and the middle point of 
the fiber are always on the same line, which can reduce the deflection of 
the beam structure, and further reduce the curvature effect. Note that 
RCLM predictions are closer to the FE simulation results, but still larger. 
Considering two end segments of any fiber in the FE model are free of 
loading and do not contribute to load carrying, it is reasonable to see 
RCLM overestimates the stiffness a bit in which all the fiber segments are 
assumed to be effective. 

Fig. 7 shows the RCLM results on the effect of crosslink rotational 
stiffness kcon the normalized Young’s modulus of nonwoven fibrous 
networks consisting of curved fibers. Similar to the case of straight fi
bers, as kc increases, the normalized Young’s modulus increases up to a 
steady value when kc > 10− 2Nμm/rad. When the curvatures of fibers are 
different, all results demonstrate a similar trend. Clearly, kc is one of the 
most important parameters that dominate the effective stiffness of the 
nonwoven networks. Here, two volume fractions, fv = 9.42% and fv =

18.85% are also compared. If the stiffness ratio is calculated for 
different curvatures, it is found that the stiffness ratio for networks with 
lower volume fraction is more sensitive to the fiber curvature. Because 
lower volume fraction in the network results in greater average segment 
length, to increase the fiber curvature will more likely weaken the 
connections between fiber segments, leading to a weaker response of the 
network. This also indicates that kc is smaller for the network where 
fibers are severely curved. 

Fig. 5. The normalized Young’s modulus of the nonwoven network as a 
function of fv and L/R0 when kc = 1.5× 10− 4Nμm/rad. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

)b()a(

L/R0 = 0.5 L/R0 = 1.0

L/R0 = 1.5 L/R0 = 2.0

Fig. 6. The curvature effect on the network normalized Young’s modulus. (a) The stiffness ratio comparing the results from RCLM model, model by Pai et al. [25], 
and FE simulations. (b) The corresponding nonwoven fiber networks with different L/R0 in FE simulations. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 7. RCLM prediction of the effect of crosslink rotational stiffness on the 
normalized Young’s modulus of nonwoven fibrous networks consisting of 
straight fibers or curved fibers. Volume fractions of 9.42% and 18.85% are 
considered. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

M. Zhang et al.                                                                                                                                                                                                                                  



Composites Part A 143 (2021) 106311

7

5. Conclusions 

In summary, to make a comprehensive understanding on the effec
tive stiffness of random nonwoven fibrous networks consisting of 
straight fibers or curved fibers, a theoretical model based on beam 
theory and network microstructure (RCLM) is developed. It is revealed 
that the fiber stretching, fiber bending, and crosslink rotation defor
mation can significantly affect the effective mechanical response of 
nonwoven fibrous networks. It also suggests that enhancing the rota
tional stiffness of crosslinks between fibers is an effective way to 
improve the mechanical properties of nonwoven fibrous networks. 
Furthermore, the RCLM shows that when the fiber center angle is 
smaller than π/3, the fiber curvature has a negligible effect on the 
effective stiffness of the network. However, when the center angle is 
larger than π/3, the network stiffness can be reduced dramatically. 
These results are validated by the FE simulations. The model presented 
here provides a solid theoretical foundation for the design, optimization, 
and property prediction of randomly distributed nonwoven fibrous 
networks. However, there are still unrevealed factors, such as the 
strength of crosslinks and van der Waals interactions, that are not 
considered in this work and will be highlighted in our future work. 
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