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a b s t r a c t

Engineering the architectures of materials is a new approach to obtain unusual properties and func-
tionalities in solids. Phononic crystals with periodically architected microstructures and compositions
exhibit omnidirectional phononic band gaps, offering a unique capability to steer mechanical wave
propagation. The coupled architecture-material design strategy, however, poses a significant challenge
to design phononic crystals with broadband and multiband vibration control capabilities. Here we
propose and demonstrate a newmetamaterial design concept inwhich symmetry-broken ligaments with
ordered topology are taken as the constitutive elements for regular lattice materials. Through integrative
computational modeling, 3D printing, and vibration testing we demonstrate that the proposed lattice
metamaterials can exhibit broad and multiple omnidirectional band gaps over a wide range of the
geometry parameters that define the ligament. We show that the designed microstructure of the lattice
metamaterial is robust and can be extended to baseline lattices with other topologies.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Architected materials have gained significant interest within
the research community in recent years due to their novel func-
tionalities and unique properties that cannot be readily achieved in
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natural bulk solids. Architectedmaterials have shown high specific
stiffness [1–3], negative Poisson’s ratio [4–8], negative thermal
expansion [9–11], and unusual elastodynamic phenomena [12–
14]. These unusual properties strongly depend upon the inherent
architecture of these solids. An example of architected materials
is the phononic crystal, which consists of periodically topological
structures and materials dispersions. These rationally designed
structures enable the manipulation of propagating acoustic and
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Fig. 1. Schematics of the proposed lattice metamaterials with curved ligaments. (a) Schematics of the lattice metamaterials. (b) Unit cell. (c) Sinusoidally-shaped ligament,
and (d) Different unit cells in the (1/n, Ann/l) parameter space.

elastic waves or phonons [15,16]. The capability of tuning the
wave propagation stems from the destructive interference at the
interfaces of the periodic units. As a result, Bragg-type band gaps
(i.e., frequency rangeswhere acoustic and elasticwavepropagation
are suppressed) arise in the dispersion relations of these archi-
tected materials [17,18]. Bragg-type band gaps offer a myriad of
potential applications such as wave filtering [19,20], waveguid-
ing [21,22], acoustic cloaking [17], thermal management [23–25],
and energy harvesting [26–28].

Despite the fact that phononic crystals with architected struc-
tures and periodic assemblies have given ample evidence of their
Bragg-type band gaps capability, the design of the architectures
simply based on usingmonophase corematerial within a rigid unit
cell topology poses a great challenge to obtain broad and multiple
band gaps. The reason behind the limitation of the current archi-
tected materials design paradigm is the nature of Bragg scattering,
which requires high lattice symmetry and contrast of mechanical
impedance among the multiple components of the periodic as-
sembly [29,30]. In this regard, lattice materials with engineered
complex architectures have gained increasing attention, since the
formation of phononic band gaps will only depend upon the lattice
symmetry and the specific architectures used. Moreover, their
design based on monophase cores allows producing lightweight
phononic crystals with relatively simple fabrication procedures.
Significant efforts have been devoted to exploring band gap prop-
erties in lattice materials with different topologies [31–38]. How-
ever, only triangular lattice configurations show a single locally
resonant band gap [31]. To generate broad phononic band gaps in
conventional lattice materials several design strategies have been
proposed, including tuning the node connectivity [33], introducing
local resonators [36,37], and using an external mechanical stimu-
lus [39]. Although these studies have demonstrated the feasibility
to achieve tunable band gaps, broad and multiple band gaps in
conventional lattice materials are still largely not realized.

In thiswork, we demonstrate fromnumerical and experimental
standpoints that broad and multiple phononic band gaps can be
achieved in a newclass of latticemetamaterials. Ourmetamaterials
are created by replacing straight ligaments in conventional lat-
tices with sinusoidally-shaped ligaments with specific wavelength
order (Fig. 1). This metamaterial design concept is motivated by
the observation that buckled-shape structures can be exploited to
create tunable phononic band gaps [12,40]. Note that here we do
not create the desired buckled lattice metamaterials using an ex-
ternal mechanical loading, because the short-wavelength buckling
mode is never preferred for regular lattice metamaterials under
macroscopic compression [41,42]. We first investigate the band

gaps properties of the proposed lattice metamaterials by perform-
ingBlochwave analysis in an infinitely periodic system. Lowampli-
tudewave transmission tests are conducted on 3D printed samples
to validate our model predictions. We show that the proposed
metamaterial design concept is robust and efficient to generate
broad and multiple band gaps. The metamaterial can be extended
to curved ligaments with different amplitudes, wavelengths, as-
pect ratios, and other topologies.

2. Characterization of the lattice metamaterials

We begin by characterizing the proposed lattice metamaterial
with a square topology, as schematically shown in Figs. 1(a)–
(c). The sinusoidally-shaped ligaments can be mathematically de-
scribed as:

y = An sin (nπx/l) , (1)

where An is the wave amplitude, n is the number of half wave-
lengths, and l is the length of a regular straight beam. The length of
the sinusoidally-shaped ligament is:

s =

∫ l

0

√
1 +

(
Annπ

l
cos

(nπx
l

))2

dx, (2)

Under the mass equivalence assumption, the width of the
curved ligament beam can be calculated as

w = t · l/s, (3)

where t is the thickness of a regular ligament. For a given parame-
ter Ann/l thewidth of the curved ligament is the same for any n.We
therefore define two parameters to describe the curved ligament:
the normalized wave amplitude Ann/l and normalized wavelength
1/n. The shape of the unit cell in the parameters space is illustrated
in Fig. 1(d).

For the following simulations and tests, the length and thick-
ness of a regular ligament are l = 2.25 cm and t = 0.1125 cm
(l/t = 20) respectively unless otherwise specified. The out-of-the-
plane thickness of each lattice metamaterial is t0 = 2.5 cm. The
lattice metamaterials are made of Verowhite (Stratasys, Ltd) with
measured Young’s modulus E = 1.6 GPa, Poisson’s ratio ν = 0.33,
and density of ρ = 1174 kg m−3 (Fig. S1).

3. Broadband and multiband features of the lattice metamate-
rials

We first focus on lattice metamaterials with a square topol-
ogy and investigate the effect of the ligament wavelength on the
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Fig. 2. Dispersion relations and eigenmodes of regular lattices and the proposed lattice metamaterials. (a) Dispersion relations for regular lattice material and lattice
metamaterials with Ann/l = 0.3, 1/n = 0.2 and 1. (b) Eigenmodes at high-symmetry points of the first irreducible Brillouin zone. The gray-shaded regions indicate the
phononic band gaps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

dispersion relations by using the commercial finite element pack-
age COMSOL Multiphysics (See Supporting Information for details
about the numerical simulation) [15,43,44]. Fig. 2(a) displays the
phononic dispersion relations for a regular lattice material and
lattice metamaterials with the same ligament amplitude (Ann/l =

0.3) but different ligament wavelengths (1/n = 0.2 and 1). For
the regular lattice material, no phononic band gaps can be ob-
served, indicating that the elastic wave in the frequency ranges
where the wavelength is comparable to the structural periodicity
can freely propagate through the medium. These results agree
with previous studies on wave propagation in conventional lattice
materials [31]. By contrast, five complete band gaps emerge in
the lattice metamaterial with a wavelength 1/n = 0.2. When
the ligament wavelength increases to 1/n = 1, the width of the
observed band gaps become smaller, or even tend to disappear –
but still, three complete wave band gaps exist.

From a physical point of view, the formation of phononic band
gaps can be attributed to Bragg scatterings and/or local reso-
nances [13,18,29,30]. To gain insight into the fundamental mecha-
nisms that govern the formation of the band gaps, we report in Fig.
2(b) the Bloch mode shapes at the high symmetry points M and K
of the band edge (red line). In the case of a regular lattice material,
the eigenmodes assume a global mode behavior that facilitates
the travel of the phonons through the structure. By contrast, the
eigenmodes corresponding to the lattice metamaterial with 1/n =

0.2 and 1 being invested bywavenumber vectors directed to theM
andK points show a strong localization behavior around the nodes.
As a result, the energy associated with the propagating wave is
trapped and localized in the lattice metamaterials, suggesting that
broad omnidirectional band gaps are induced by local resonances.
Further evidence of this omnidirectional band gap presence is also
highlighted by the flatness of the red band edge, which indicates a
nearly zero group velocity [45–47].

Low-frequency band gaps can also be observed in the lat-
tice metamaterial with 1/n = 1. To quantitatively understand
the mechanisms responsible for these band gaps formation, we
compare the effective wavelength with its structural periodicity.
The effective Young’s modulus and Poisson’s ratio for the lattice
metamaterials with 1/n = 1 can be obtained by following a
finite element procedure [48], which are 0.469 MPa and -0.65,
respectively. Then, the transverse wave velocity for this lattice

metamaterial can be calculated as ct =
√

µ∗/ρ∗ , where µ∗(0.67
MPa) and ρ∗(115.6 kg m−3) are the effective shear modulus and
effective density, respectively. As a result, the estimated transverse
velocities for 1/n = 1 is 76.2 m s−1. At the middle frequency of the
lowest band gap, the effective wavelength is 3.75 cm, which is the
same magnitude as the structural periodicity 4.5 cm. That means
Bragg scattering is responsible for the low-frequency band gaps of
lattice metamaterial with 1/n = 1.

Our simulations and analyses indicate that the broadband and
multiband features are due to the coexisting of twodifferentmech-
anisms, i.e., local resonances and Bragg scattering. Intrinsically,
the broad and multiple band gaps in the lattice metamaterials are
dictated by the rational design of the ligament, which favors the
coupling of the axial and bending motion [49].

4. Low amplitude wave transmission test

To validate the predictions of our models we have fabricated
by 3D printing both regular lattices and lattice metamaterials with
ligament amplitude Ann/l = 0.3 and wavelength 1/n = 0.2,
0.33 and 1 (Fig. S2 and Fig. 3 (a)). Each sample consisted of 2×5
unit cells and was made of Verowhite (Stratasys, Ltd). We have
then performed low amplitude elastic wave transmission tests by
exciting the 3D printed samples with an impact hammer (Figs.
3(b)–(c)). For details about the fabrication and experimental ac-
tivity, the reader is referred to the Supporting Information. The
transmission is computed as the ratio of output acceleration am-
plitude (a) to the input force amplitude (F ). For the purpose of
comparison, similar frequency domain analyses are also performed
via numerical simulation to represent the wave propagation in
finite-size structures (See Supporting Information for details of the
numerical simulation) [45,50].

Figs. 3(d)–(g) show the transmission spectra of regular lattice
material and lattice metamaterials with 1/n = 0.2, 0.33, and 1,
respectively. In the simulated transmission spectrumof the regular
lattice material, one can observe several transmission dips that
correspond to partial band gaps along M–K direction (Fig. 3(a)).
In the transmission spectra of the lattice metamaterials, we notice
the presence of attenuation zones that agree extremely well with
the simulated phononic band gaps in the dispersion relations (Fig.
3(a)). By comparing the measured transmission spectra with the
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Fig. 3. Low amplitude wave transmission test of the lattice metamaterials along the M–K direction. (a) 3D printed samples with Ann/l = 0.3, 1/n = 0.2. (b) Experimental
setup of the transmission test. (c) Measured acceleration–time curve for 3D-printed samples with Ann/l = 0.3, 1/n = 0.2. (d)–(g) Comparison between measured and
simulated transmission spectra for lattice metamaterials with different wavelengths. The gray-shaded regions indicate the phononic band gaps. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

predictions from the model we notice that simulated attenuation
zones can be identified within the measured transmission spectra.
For lattice metamaterials with1/n = 1, a quantitative agreement
for the transmissibility values can be observed for the partial band
gaps within 1.44 kHz –2.94 kHz. A predicted partial band gap
between 15 kHz and 19 kHz (along M-K direction, gray-shaded
region) can be clearly seen for lattice metamaterials with1/n =

0.2. To better understand the wave propagation in the lattice
metamaterials we plot in Fig. 4 the dynamic response of the
metamaterials under harmonic excitation inside and outside the
band gaps. For both latticemetamaterials, the incident planewaves
inside the band gaps decay rapidly, whereas incident waves can
travel through the metamaterials when the excitation frequency
lies outside the band gaps.

It is noticeable that the simulated partial band gaps over the
whole sweeping frequency range cannot be perfectly captured us-
ing the transmission test. For example, the simulated partial band
gap for the lattice metamaterial with 1/n = 0.2 is between 15 kHz

and 19 kHz, while transmission peaks arise in the measured trans-
mission spectra for the same frequency range (black arrows). This
discrepancy could be associated with one, or a combination of the
following factors: (1) Boundary conditions. In the simulation, we
use perfectly matched layers to prevent reflections by the scatter-
ingwaves from thedomain boundaries,while this virtual boundary
condition cannot be realized in a lab environment. (2) Out-of-the-
plane vibration. In our simulations, the plane strain condition is
adopted for the lattice metamaterials. Out-of-the-plane vibration
could, however, exist in the finite-thickness lattice metamaterials.
(3) The anisotropic feature of the samples fabricated by 3D print-
ing. Due to the layer by layer manufacture process of 3D printing,
the mechanical properties of the printed samples strongly depend
on the printing directions. While in our numerical simulations,
an isotropic material model is adopted [51]. (4) Damping effect.
Most of the polymers for 3D printing have a significant damping
effect [52], which could attenuate the response and minimize the
effect of the phononic band gaps. We are unable to quantitatively
and separately understand the contribution of each possible reason
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Fig. 4. Frequency domain analysis for low amplitude wave transmission. (a) FE model (See Supporting Information for details). (b)–(c) Dynamic response of the lattice
metamaterials at a frequency inside and outside the band gaps for lattice metamaterials with Ann/l = 0.3, 1/n = 0.2 and Ann/l = 0.3, 1/n = 1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

for the discrepancy, but the effect of damping on the vibration
can be understood. To this end, we have first conducted DMA test
to characterize the damping feature of Verowhite. It is noticeable
that at room temperature (23 ◦C), the loss factor is about 0.12
(Figure S2), which will be used in the frequency domain analysis.
Then, we have conducted frequency domain analysis to study the
effect of damping on the transmission properties, as shown in
Fig. 3. For example, when damping effect is incorporated in our
simulations, there is significant attenuation in a high-frequency
range (>5 kHz), which agreed better with the measured transmis-
sion spectra. While at low-frequency range, damping effect can be
neglected. These simulations can partially explain that damping
effect plays a significant role in our experiments. Notwithstanding
these limitations, the low amplitude wave transmission test of the
finite-size lattice metamaterials is able to indicate the presence of
the broadband and multiband absorption feature.

5. Effect of geometric features and topologies

5.1. Effects of the ligament geometry on the vibration control

We have numerically and experimentally demonstrated that
broad and multiple band gaps can be obtained in the proposed
lattice metamaterials. This remarkable vibration control capability
is intrinsically dictated by the artificially architected ligamentwith
a curved shape. We then systematically investigate the effects of
the geometric features of the curved beam, i.e., Ann/l and 1/n, over
the band gap properties. To this end, we define two indicators to
characterize the broadband andmultiband features: themaximum
relative band gaps (∆ω/ω∗)max and the total relative band gaps∑

(∆ω/ω∗). The two metrics are defined by ∆ω (band gap width)
and the midgap frequency ω∗ [15]. Figs. 5(a) and (b) show the evo-
lution of the maximum band gap and total band gaps as a function
of the geometric features. For a given ligament wavelength both
broad and multiple band gaps increase proportionally to the lig-
ament wave amplitude. For extremely small ligament amplitudes
(Ann/l = 0.05), no complete band gaps can be observed (Fig. 5(c)).

This is expected since no complete band gaps exist in regular lattice
materials with square topology. It is also noticeable that the broad
and multiple band gaps arise in lattice metamaterials with the
largestwave amplitude and awavelength range from0.4 to 0.8 (Fig.
5(d)).

Another geometric parameter of interest is the beam slender-
ness ratio, which dictates the deformation behavior of the lig-
ament. Here for simplicity, we use l/t to examine the effect of
slenderness ratio on the band gap property. Figs. 6(a)–(b) show
the evolution of the maximum and total band gaps as a function
of l/t for lattice metamaterials with 1/n = 0.25 and 1/n =

0.5. For the purpose of the comparison, the evolution of the band
gaps related to regular lattice materials with different slenderness
ratios is also presented. As expected, no complete or small band
gaps can be observed in the regular lattice materials. By contrast,
for lattice metamaterials with different wavelengths, broad and
multiple band gaps can be observed. Specifically, for the lattice
metamaterial with 1/n = 0.25, an optimal maximum band gap
is observed for a l/t = 10, while for lattice metamaterials with
1/n = 0.5, the maximum band gap is proportional to l/t (Figs.
6(c) and (d)). It is also interesting to notice that the higher the
waviness, the higher is the maximum band gap, especially for l/t
lower than 30. High waviness (1/n = 0.25 in this case) allows
obtaining maximum band gaps even at relatively low slenderness
ratios, for which shear deformation of the cross section becomes
more important. On the contrary, lower waviness metamaterials
tend to feature low maximum band gaps for thicker ligaments. It
should be pointed out that the evolution of the maximum band
gaps for 1/n = 0.25 does not monotonically increase. The reasons
are twofold: (1) the maximum band gap for each slenderness
ratio is taken from the dispersion relations and therefore may not
exist at the same bands. The evolution of a single band gap is not
tracked because the maximum band gaps are more important in
practical applications. (2) All numerical simulations suggest that
there is no an obvious trend for the evolution of band gaps as a
function of geometric features such as ligament wave amplitude
and wavelength. In the case of the total band gaps, it is evident
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Fig. 5. Effects of the ligament geometry on the phononic band gaps. (a)–(b) Effects of the wavelength and wave amplitude on the evolution of the maximum and full
band gaps. (c)–(d) Dispersion relations for the lattice metamaterials with two extreme ligament amplitudes, Ann/l = 0.05, 1/n = 0.5 and Ann/l = 0.5, 1/n = 0.25. The
gray-shaded regions indicate the phononic band gaps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

the direct proportionality with increasing values of l/t , although
the amount of the total band gap tends to plateau for very high
ligaments slenderness. The relative density of lattice materials
is inversely proportional to the slenderness ratio [53], and this
indicates that the proposed lattice metamaterials not only exhibit
broad and multiple band gap features, but are also lightweight.

These systematic investigations reveal that the geometric fea-
tures of the curved ligaments (amplitude, wavelength, and slen-
derness ratio) are critical to the formation of band gaps. Although
we have not built any analytical relation between these geometric
features with the band gap properties of the lattice metamaterials,
it is evident that the geometry uniquely dictates the deformation
behavior and the vibrational modes of the artificially designed
ligament. Quite importantly, these parameters can be tailored to
design lattice metamaterials with desired or optimized vibration
control capability.

5.2. Effect of lattice topology on the vibration control

While the results reported so far are focused on lattice meta-
materials with a square topology, we now proceed to demonstrate
that the proposed lattice metamaterial design is not restricted to
this specific topology only, and can be extended to lattice meta-
materials with other shapes. Due to the geometric constraints in
triangular latticemetamaterials and for the purpose of comparison,
here we focus on lattice metamaterials with even numbers of half
sinusoid, i.e., n = 2 and 4. We first report the simulated dispersion
relations for latticemetamaterials with different topologies in Figs.
7 (a)–(b). As expected, broad and multiple band gaps persist in
each lattice metamaterials defined by different topologies, giving
evidence that this design concept is general and robust. This phe-
nomenon is quite different from that observed in conventional
lattice materials, whose band gap properties strongly depend on
the lattice topologies or the node connectivity [54]. We further

Fig. 6. Effect of the slenderness of the ligament on the evolution of the phononic
band gaps. (a)–(b) Evolution of the maximum and total band gaps with respect
to the ligament slenderness l/t . (c)–(d) Dispersion relations for the lattice meta-
materials with extreme slenderness, l/t = 5 and l/t = 50. Here Ann/l = 0.30
and 1/n = 0.5. The gray-shaded regions indicate the phononic band gaps. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)



30 Y. Chen et al. / Extreme Mechanics Letters 17 (2017) 24–32

Fig. 7. Effect of lattice topology on phononic band gaps. (a) Schematics of lattice metamaterials with hexagonal, square, kagome, and triangular topologies, respectively.
The area surrounded by the dash lines is the representative unit cell for each topology. (b) Dispersion relations for lattice metamaterials with hexagonal, square, kagome,
and triangular topologies. Here each ligament has a wave amplitude ofAnn/l = 0.30 and wavelength of 1/n = 0.5. (c)–(d) Maximum band gap and total band gaps for
lattice metamaterials with hexagonal, square, kagome, and triangular topologies. Here each ligament has a wave amplitude ofAnn/l = 0.30 but different wavelengths. The
gray-shaded regions indicate the phononic band gaps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

compare the maximum and total band gaps for lattice metama-
terials with different topologies and different wavelengths (Figs. 7
(c)–(d)). It can be seen that both maximum and total band gaps
for lattice metamaterials are larger than those of regular lattice
materials. Note that for a given topology, a combination of optimal
ligament wavelength and wave amplitude is essential to generate
the complete band gaps, as these geometric parameters intrinsi-
cally dictate the vibrational modes of ligaments.

To validate the numerical predictions, low amplitude wave
transmission tests along the M-K direction are performed on 3D-
printed latticemetamaterialswith hexagonal, square, kagome, and
triangular topologies (Fig. 8(a) and Fig. S3). It is worth noticing
the very good agreement with the measured transmission spectra,
especially at low frequencies. By using the sinusoidally-shaped
ligamentmicrostructure topology one can seize new opportunities
to design metamaterial systems that can integrate geometric fea-
tures at different microstructural levels, i.e., the architecture of the
ligament and the topology of the lattice metamaterials.

6. Conclusions

We have proposed and demonstrated the existence of a new
class of lattice metamaterials consisting of curved ligaments that
possess both broad and multiple phononic band gaps. These re-
markable band gap properties are intrinsically controlled by the
unique vibration behavior of the artificially designed ligaments.
Moreover, our results indicate that the proposed metamaterial
design concept not only works for a wide range of geometric
parameters of the curved ligaments, but can also be extended
to other topologies. Unlike conventional phononic crystals with
multiple elastic phases, the broad andmultiple band gapproperties
of the lattice metamaterials proposed in this work are material-
independent, which indicates that a coupledmaterial-architecture
design strategy is not essential. However for higher amplitude
wave, such as impact or shockwave, both architectures and consti-
tutive materials are critical to the dynamic response of the lattice
metamaterials. Furthermore, the proposed metamaterial design
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Fig. 8. Wave transmission test of the lattice metamaterials with different topologies along the M–K direction. (a) 3D printed lattice metamaterials with hexagonal, square,
kagome, and triangular topologies. (b)–(e) Comparison betweenmeasured and simulated transmission spectra for lattice metamaterials with different topologies. Here each
ligament has a wave amplitude ofAnn/l = 0.30 and wavelength of 1/n = 0.5. The out-of-the-plane thickness of each lattice metamaterial is 2.5 cm. The gray-shaded regions
indicate the phononic band gaps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

concept is scale-independent and can be applied to various length
scales. Due to the frequency range limitation of our vibration
transmissibility test, we have fabricated samples with a ligament
length of 2.25 cm and made of Verowhite polymer as demon-
strators. Similar phononic band gap properties within different
frequency ranges can be however envisioned for lattice metama-
terials at various length scales. Finally, the prescribed curvature
in the architected ligaments can be harnessed to tailor the band
gap properties. The curved ligaments have excellent stretchability
under tension because the local strain is much smaller than the
macroscopic one when the lattice metamaterials are subjected to
uniaxial stretching. As a result, the external mechanical stimulus
of low magnitude could be further imposed to dynamically tune
the band gaps. The metamaterial design concept proposed here
provides new insights into the development of architected meta-
materials with a broad range of potential applications, such as
wave filtering, waveguiding, programmable acoustic metamateri-
als, vibration isolation, as well as stretchable electronics.
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