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Metamaterials are defined as a family of rationally designed artificial materials which can provide
extraordinary effective properties compared with their nature counterparts. This paper proposes a level
set based method for topology optimization of both single and multiple-material Negative Poisson’s Ratio
(NPR) metamaterials. For multi-material topology optimization, the conventional level set method is
advanced with a new approach exploiting the reconciled level set (RLS) method. The proposed method
simplifies the multi-material topology optimization by evolving each individual material with a single
level set function and reconciling the result level set field with the Merriman-Bence-Osher (MBO)
operator. The NPR metamaterial design problem is recast as a variational problem, where the effective
elastic properties of the spatially periodic microstructure are formulated as the strain energy functionals
under uniform displacement boundary conditions. The adjoint variable method is utilized to derive the
shape sensitivities by combining the general linear elastic equation with a weak imposition of Dirichlet
boundary conditions. The design velocity field is constructed using the steepest descent method and
integrated with the level set method. Both single and multiple-material mechanical metamaterials are
achieved in 2D and 3D with different Poisson’s ratios and volumes. Benchmark designs are fabricated with
multi-material 3D printing at high resolution. The effective auxetic properties of the achieved designs are
verified through finite element simulations and characterized using experimental tests as well.
Published by Elsevier Ltd.
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1. Introduction

Metamaterials gain extraordinary effective properties from
rationally designed structures rather than their composition, and
thus the layout of the microstructure has a significant impact
on their properties. This paper focuses on designing mechanical
metamaterials with negative Poisson’s ratios (NPR), which are
also known as auxetics or auxetic materials. When an NPR
material is compressed along a particular axis, it is observed
to contract in the perpendicular directions, as demonstrated in
Fig. 1. This counter-intuitive property can be utilized to strengthen
mechanical properties for the purpose of improving the crack
resistance [ 1], increasing the fracture toughness [2,3], or providing
higher sound absorption capacity [4]. Since Lakes first developed
NPR foam structures in 1987 [5], the research work on NPR
metamaterials modeling, design and manufacturing as well as
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their potential applications has advanced considerably [6-14].
In 1985, Kolpakov proposed a method for approximating the
average elastic characteristics of framework structures of periodic
configuration, and constructed fine-celled framework structures
with negative Poisson’s ratios [15]. Almgren presented a strategy
to make a structure of rods, hinges and springs to achieve a
negative Poisson’s ratio equal to —1[16]. Theocaris et al. employed
the numerical homogenization theory for the investigation of
composite structures with star-shaped inclusions, which are able
to exhibit a negative Poisson’s ratio [17].

Conventional design practice for metamaterials relies heavily
on designers’ intuition or analogy to existing design solutions,
which is limited by a small design space. Topology optimization
(TO)[18]is a powerful computational tool which recasts the design
problem as an optimal material distribution problem so that the
system will find an optimal material layout to fulfill the functional
requirements quantified by the objective and constraint func-
tions in the optimization scheme. During the past three decades,
topology optimization of lightweight load-carrying structures
with linear elastic behaviors has been well established [19-21],
and was naturally extended to systematical design of metamate-
rials with highly nonlinear behavior and multi-physics coupling
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Fig. 1. 3D auxetic mechanical metamaterial with a negative Poisson’s ratio.

characteristics. To the authors’ best knowledge, the first engi-
neered microstructures with prescribed constitutive parameters
was designed by Sigmund using inverse homogenization theory in
1994 [22]. Sigmund [23] successfully applied inverse homogeniza-
tion to obtain truss frame microstructures with negative Poisson’s
ratios both in 2D and 3D. Wang et al. [24] and Allaire et al. [25]
both applied a level-set based optimization method to 2D NPR de-
signs. Zhang et al. [26] employed the strain energy-based method
to predict effective elastic properties and applied a dual optimiza-
tion algorithm to the design of microstructure with tailored elas-
tic properties. Even though 2D NPR designs can be extruded in
order to get manufacturable 3D geometries [27], interests in 3D mi-
crostructures have led to some recent developments in NPR struc-
ture design. Schwerdtfeger et al. [28] using solid isotropic material
with penalization (SIMP) method obtained a 3D NPR microstruc-
ture. In another recent contribution, Andreassen et al. [29] de-
signed a manufacturable 3D extremal elastic microstructure using
a modified SIMP method. More recently, Shan et al. [30] developed
2D isotropic NPR structures by embedding periodic arrays of cuts
in elastomeric sheets. Moreover, Clausen et al. [31] designed mi-
crostructures with programmable Poisson’s ratios over large de-
formations.

This paper is concerned with an improved level set method for
the rational design of 2D and 3D NPR metamaterials, multi-phase
NPR metamaterials. Level set methods, originally developed for
tracking free fluid boundaries [32], have grown to be an attractive
tool for topology optimization [33,34]. The key idea of the level set
methods is to implicitly represent a moving boundary as the zero
level set of a function with one higher dimension. The motion of
the boundary is numerically described using the Hamilton-Jacobi
partial differential equation (H-] PDE) [32]. The design velocity
field, which is usually obtained via shape sensitivity analysis, will
drive the boundary to evolve during the design process. Further
technical details about the level set method will be provided in
Section 3.

The paper begins by explaining how to evaluate the effective
properties of the unit cell with the strain energy-based method.
The problem settings for designing NPR microstructures is
provided in Section 3, followed by numerical examples to
demonstrate the performance of the proposed method in Section 4.
In Section 5, auxetic effects are verified through finite element
simulations and validated through experimental tests with 2D NPR
metamaterials. Concluding remarks are provided in Section 6.

2. Prediction of effective elastic modulus tensors of a unit cell
with strain energy-based method

Metamaterials are characterized by the spatially periodic
arrangement of the microstructures, as shown in Fig. 2. The
effective elastic properties of a continuous medium directly
depend on its microstructure. A key issue here is how to link
field variables at microscopic length scale to field variables at

Fig. 2. Periodically assembled unit cell.

macroscopic length scale. In micromechanics, this relation can
be formulated using two basic theories: the homogenization
theory [35-42] and the strain energy based method [26]. A
quantitative comparison of the two methods was provided by
Hollister and Kikuchi [43].

The strain energy-based method originates from the standard
mechanics analysis, which formulates the effective modulus ten-
sors of the unit cell as the strain energy functionals under different
boundary conditions. Compared with the homogenization theory,
the strain energy-based method provides a relatively simple and
efficient way [26] in the estimation of the homogenized properties
and the sensitivity analysis as well. There are three loading cases
for 2D problems with kI = 11, 22, 12 and six loading cases for 3D
problems with kI = 11, 22, 33, 12, 23, 13.

For linear elastic problems, the average stress and average
strain of the homogeneous medium are equivalent to the domain
integration of the local stress and local strain in the microstructure,
which can be mathematically expressed as 6 = i [ 03dV and
& = % f edV. The constitutive law between average stress and
average strain can be characterized by the generalized Hooke’s Law
as:

- H -
0’,‘]‘ = Cijklskl' (1)

In the above equation, Cg,d is the homogenized elastic modulus
tensor, which depends on the layout of the materials of the unit
cell. For a 2D orthotropic medium, Eq. (1) can be rewritten as
follows:

511 Cin Chiz O 1
[522]: ct, Chy, O [522] (2)

012 0 0 C{-IZIZ 2812

The multiscale structure-property relation can be constructed
according to the fact that the strain energy of the homogeneous
medium, which is defined as Uf = %V&U - &, and the strain
energy of the unit cell, which is defined as U = %fv ojjendV,
are equivalent. This multiscale structure-property relation can be
formulated as follows:

1 _ 1
EVoij-ak,: 5/‘/O’ij8k1dv. (3)

Substitute Eq. (1) into Eq. (3), the effective elastic stiffness
constants C,,, C\, and C!,, can be determined by applying the
following three unit strain fields respectively:

1 0 1
ean =10¢, e =11¢, €z =1 1¢- (4)
0 0 0

The uniform strain boundary condition is replaced with equivalent
Dirichlet boundary condition in numerical implementation. For
example, the effective elastic stiffness constant CH , can be
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Fig. 3. Boundary conditions for unit cell: (a) Loading case 1, (b) Loading case 2, and (c) Loading case 3.

derived from loading case 1, shown in Fig. 3(a), with the
corresponding Dirichlet boundary conditions as follow:

up =1, vy =14 =0, uz =0, (5)

where the subscripts denote the four boundaries of the unit cell.
The strain energy of the orthotropic medium under the above
horizontal unit strain can be calculated by:

1 17 [Cih Gl 0 1
EV 8 C{.I122 C;’ZZZ 0 0

0
0o o0 Ch,

Ule =
(6)
1

= —vcH ..
2 1111

The total strain energy can also be expressed using the domain

integration of the local strain energy density in the unit cell, as Eq.
(7) shows:

1
Unn = */ el Dijue1ds2. ™)
2Ja

Assuming the volume of the unit cell is equal to 1 and keeping in
mind that U]”m = Uj111, the expression of the effective elastic
stiffness constant CF,; can be further simplified to CY ;; = 2Uy111,
and similarly Cz”222 = 2Uy79». The effective elastic stiffness constant

C{"m can be formulated as a function of the strain energy by setting
the boundary conditions as:

u; =1, vy =1, U3:0, vy = 0. (8)

The corresponding strain energy becomes:
. Ciin Cli 0 1
U, ==vi[1| [ct,c, o 1
1122 — 2 1122 ~2222
0 0 0o cH 0
1 1212
EV (C{{lll + C{{lzz + C{{IZZ + CZHZZZ) .

(9)

By substituting C¥,; = 2Uq111 and Cf),, = 2Ux;»; into Eq. (9), it
can be derived that C{{uz = Uq122 — U111 — Uzz22. When it comes
to 3D unit cells with orthotropic material, there are 9 independent
elastic stiffness constants:

Ciin Crizz Ciss 0 0 0
Ciizz Gz Coo33 0 0 0

| Cizz Coazz Csszz 0 0 0

Gu=1"90 0 0 Gpm 0 0 (10)
0O 0 0 0 Cas 0

0 0 0 0 0 Ci212

The same calculations are made for the 3D case and the results are
summarized in Table 1.

Table 1
Effective elastic stiffness constants for 3D case.
CH o = 2Unn, Cl 1, = 2Unm, Clyy = Urio — Ui — Un

H H  _ H o _
Con2a = 2Un222, Gyzp3 = 2Un323, Cyp33 = Unasz — Uaaza — Usssg

H o _ H o _ H
C3333 = 2U3333, C313 = 2U1313, Cij33 = U133 — U111 — Usssz

3. Multi-phase topology optimization of microstructures

3.1. Level set methods

Level set methods, introduced by Osher and Sethian [32],
have become an attractive approach in topology optimization [33,
34], which provide smooth boundaries, crisp interfaces, high
shape fidelity and great topological flexibility. Sethian and Wieg-
mann [44] employed level set approach along with immersed
interface method for structural boundary design. Osher and San-
tosa [45] introduced a shape sensitivity analysis using gradient
method to obtain a velocity field, and later Allaire et al. [34,46]
proposed a method where the velocity field is derived from shape
sensitivity analysis by employing the adjoint variable method.
Wang et al. [47] established a link between the general struc-
tural optimization and the level set method through a design
velocity field calculated using the material derivative in contin-
uum mechanics. Belytschko et al. [48] developed a method with
implicit function and regularization enabling sensitivity evalua-
tions. Radial Basis Functions (RBFs) were proposed by Wang et al.
[49-51] to parameterize the level set function and transform the
Hamilton-Jacobi equation into a system of ordinary differential
equations, which not only increased the efficiency of level set
method but also improved its robustness in handling multiple con-
straints.

As its name implies, in level set methods, the boundary is
implicitly represented by an isosurface of a surface (level set
function) with one higher dimension, which divides the design
domain into three parts according to the signs of the level set
function, as shown in Fig. 4.

¢ (x(t), t) > 0,
¢ (x(t),t) =0,
¢ x(t), 1) <0,

Vx € 2 (material)
Vx e I" (boundary) (11)
Vx € D\ £2 (void) .

By differentiating ¢ (x(t), t) = 0 with respect to the pseudo
time, the Hamilton-Jacobi equation [32,52] is obtained:
0 (x, t
%) L Vo t)-V(x) =0 (12)
where V(x) = dx/dt is the velocity field on the boundary. Eq. (12)
can be equivalently reformulated as:
99 (x, 1)

t

o ThVe =0 (13)
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Fig. 4. Representation of a 2D geometry with a 3D level set function.

where V,(x) = V(x) - n = V(x) - lgz&g‘ is the normal velocity
field.

In this way, the optimization problem can be transformed into a
problem of finding the steady-state solution of Eq. (13). The shape
sensitivity analysis and the construction of the design velocity field
is presented in Section 3.5.

3.2. Reconciled level set method for multi-material shape and
topology optimization

Multi-material optimization schemes have been developed
based on the classical single material optimization methods.
Sigmund [53] employed SIMP with a modified interpolation
scheme, based on Hashin-Shtrikman bounds, for a two-material
Multiphysics actuator. Gao et al. [54,55] proposed a multiphase
optimization based on a mass constraint, instead of volume
constraint. Wang and Wang [56] developed the ‘Color’ level set
method (CLSM) [56-58] which separates the materials by using
the different sign combinations of n level set functions. In this
way, those n level set functions can be utilized to represent at
most 2" materials. An alternative method is the Piecewise constant
level set method [59-61], in which different values of the level
set functions split the design domain into different areas. In this
work, the Reconciled level set method is employed for topology
optimization of NPR metamaterials. The RLSM was first introduced
by Merriman, Bence and Osher [62,63] for modeling multi-phase
flow and was first employed by the author for multi-material
topology optimization of smart energy harvesters [64]. RLSM
retains the features of CLSM in multi-material representation and
the convenience in the specification of arbitrary design velocities
on each level set function. In addition, RLSM offers a more
straightforward and convenient way to implement multi-material
topology optimization than CLSM, since each individual material is
uniquely represented by an independent level set function.

A critical issue in evolving multiple level set functions is that
the independent evolution of the different level set functions may
lead to overlaps or voids. In order to avoid such problems, the
Merriman-Bence-Osher (MBO) operator [62,63] is employed to
reconcile the level set function of each material i in relation to the
rest of the materials j:

1
1 temp temp
=-|¢ = — maxo; 14
¢ =3 (¢! na ox ) (14)
where ¢;”"" stands for the level set function after the evolution

and the ¢ denotes the final level set function after applying the
MBO operator. The subscripts i and j refer to the different materials.
The RLSM is a predictor-corrector computational procedure. The
impact of the MBO operator on the boundary evolution process
is illustrated in Fig. 5, which demonstrates the evolution process
of two materials in two consecutive iterations, 0 and 1, with
each individual material represented using a level set function
independently. At iteration 0, the circles are located in a distance
of each other, as shown in Fig. 5(a). Without the use of the MBO

operator, the evolution of the independent level set functions may
result in an overlap intersected between the two materials as
shown in Fig. 5(b). The MBO operator will correct the coupled level
set functions, as shown in Fig. 5(c). A comparison of the pros and
cons between RLSM and CLSM is summarized in Table 2.

3.3. Problem settings for NPR metamaterial design

The NPR materials design problem can be formulated as a least
square optimization problem to minimize the difference between
the homogenized elastic stiffness constant Ciﬁd and the design

targets Cjj:

1 d
Minimize | = 3 Z wia (Gt — ,-;’-‘k,)z
i k=1 B (15)
subjectto: a(u,v)=1(v), VYveU()
V(R)=V*

where d is 2 for 2D and 3 for 3D studies, wjj is the weighting factor
associated with the corresponding elasticity tensors, V (§2) is the
volume of the unit cell and V* is the volume target. The bilinear
energy form a (u, v), the linear load form [ (v) and the volume of
the unit cell are described by:

a(u,v) = / & () Gy (v) H (¢) d2
D
1(v) =/83Ci;kzsk,(v)H(¢) e (16)
D

V(Q):/H(qb)d[?
D

where H(¢) is the Heaviside function and D denotes the compu-
tational domain. In the numerical implementation, the level set
function (LSF) is regularized to be a signed-distance function which
does not only avoid too steep or too flat LSFs but also results in a
smooth tensor field [58]. Moreover, the Courant-Friedrichs-Lewy
(CFL) condition must be satisfied to improve the numerical stabil-
ity while solving the H-] PDE [32].

3.4. Numerical implementation

In numerical implementation, the unit strain field and periodic
boundary condition can be equivalently replaced by symmetric
and Dirichlet boundary conditions [65]. The 2D boundary value
problem is solved using the commercial software COMSOL under
plane stress assumption, where the elastic modulus tensor is
provided in equation. Similarly, for the 3D cases the elastic tensor
is provided in Eq. (10). This formulation gives the flexibility
of creating microstructure with different behavior in different
directions. In the current implementation, Cy111; and Cyyy; have
the same prescribed, and the expected Poison’s ratio are v;; =
Ci122/Ci111 for 2D and vy, = CH,,/(Ct ., + CH,) for 3D. The
flowchart of the optimization process is described Fig. 6.

3.5. Shape sensitivity analysis

To minimize the least square objective functional formulated
in Eq. (15), we need to calculate the variation of the objective
functional with respect to a variation of the boundary. In the
current work, this process is done by using the material time
derivative approach [66-68]. The Lagrange multiplier method
is applied to couple the objective function with the governing
equation. The design velocity field will be identified by taking the
derivative of the Lagrange equation with respect to a pseudo-time
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a b

Fig. 5. Multi-material level set evolution. (a) Before evolution (iteration 0); (b) intermediate state (temp); (c) with MBO operator applied (iteration 1).

Table 2
Summary comparison between RLSM and CLSM.

Reconciled level set method

‘Color’ level set method

1. nlevel set functions represent n material phase 1. nlevel set functions represent 2" material phase
2. One-to-one relationship between level set function and material 2. Different sign combinations of the level set functions identify different materials
3. MBO operator to avoid overlaps 3. Nooverlaps
4. Straightforward and convenient for implementation 4. Not straightforward to construct initial design
5. The level set function for each material is a signed distance 5. The combined level set function for each material is no longer a signed distance function
function
ialize lovel-set functi The derivative of the objective function with respect to the pseudo-
Initialize level-set function time ¢ is obtained as:
d H
dl — Wi (CH _r* ) dcijkl (18)
dr ikl \&ijkt ijkl dr
Yes ij,k,I=1
EE— Converged?

N
Solving equilibrium equation
to obtain strain energy field

Computing effective elastic
tensor CI::,

v

[ Shape sensitivity analysis to

construct design velocity
field

.

Update level-set function by
solving Hamilton-Jacobi

equation

o

Fig. 6. Optimization flowchart.

t, which will be further integrated with the method of steepest
descent to minimize the objective function.
The Lagrange equation is given by:

L=]+A\g. (17)

Since the effective properties are essentially the strain energy of
the unit cell, the optimization problem of metamaterial design
can be transformed to a series of mean compliance optimization
problems under different Dirichlet boundary conditions. In each
mean compliance optimization subproblem, the complete weak
form of the governing equation with a weak imposition of Dirichlet
boundary conditions can be rewritten as follows:

g = / ej (W) Gyuew (v)d2 — B | (u—up) - vds. (19)
Q Iy
In Eq. (19), B is the Lagrange multiplier and uq is the prescribed
displacement on the boundary.
For the cases that ij = kI (1111, 2222 and, 3333 for 3D), the
effective elastic modulus can be expressed by the strain energy-
based method as described in Section 2:

Gy = / g (u) Cjuew (1) d2. (20)
2

The derivative of the Lagrangian is expressed as:

DL

Dt [zwifkl (Gt — Gia) f £ (1) Gyaew (u) dS2
2

+ / 85 (') Gjuew (V) d2 — B [ u'- Uds]
2

Ip

+ |:wfjkl (Chta — Cii) / &j (u) Gijew (u) Vods
r

+ / 8,5 (W) Gjxiew (v) Vnds] 21)
r

The first bracketed term is called the adjoint equation and the field
variable v is called the adjoint variable. The adjoint equation will
vanish when the adjoint variable v is set to be the following values:
—2wyiq (Cljy — Cir) u.  in 82

22
0, on Ip. (22)
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By substituting v into the convection terms in the second
bracket, the shape sensitivity can be simplified as:

wia (Cita — Cia) /r & () Gjuew (1) Vads
+ /1"85 (u) Gjxen (v) Vpds
= wija (City — Cia) |:/r & (u) Gjuw (1) Vods
+ /FSE (W) Gjxiew (—2u) VndS]

= —wiu (Cfiy — Ciia) /r & () Gijuen (1) Vods. (23)

With the steepest-descent method, the design velocity field can be
constructed as:

Vi = it (Cliy — i) €5 W) Ciraga (1) , (24)

which is essentially the strain energy density of the unit cell under
different loading cases.

In a similar way, the sensitivity analysis for the cases where
ij # kl(1122, and 1133 and 2233 for 3D) the velocity can be
obtained as:

1

V, = S Wi (Clhaz — Ciiza) [£12 (W) Crizaez ()

— &1y () Crinnen (u) — &5, () Conmer (W] . (25)

By adding the mean curvature flow k for smoothing the boundaries
and the contribution of the volume constraint to the sum of the
velocities for each case, the whole design velocity field for the
Lagrangian is defined as:

3or6
Vo= D V& + 1 (V—V*) + bk, (26)

case=1

where I; and I, are the fixed Lagrangian multipliers for the volume
and perimeter constraints respectively.

4. Numerical examples

In this section, the optimization procedure described above is
applied to several benchmark examples. The following parameters
are applied to all these examples, unless otherwise specified: the
Young’s modulus for the solid material is E = 0.91 GPa and for the
dummy material E, = 10~% GPa; both with same Poisson’s ratio
equal to 0.3; the unit cell is discretized with 50-by-50 four-node
quadrilateral elements.

This section begins with a demonstration of the optimization
on a 2D design with specific prescribed elastic properties. Then, a
parametric study is carried out with different volume constraints
and Poisson’s ratio targets, which aims to provide a complete
overview of the potential designs. The effects of the initial designs
as well as the Poisson’s ratio targets are studied. Moreover, the
optimization is applied in a multi-material problem with two
material phases. At the end of this section, the procedure has
also been extended to 3D problems, presenting unique single and
multi-material designs of microstructures with negative Poisson’s
ratios.

1 T T T

Objective Function
o
n
Poisson's Ratio

Iteration Number

Fig. 7. The optimization history curve for the design with v = —0.4.

. W
g Cluyy =02, Clly, = 019407 .
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02 . . . . . . . .
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Fig. 8. The history curves of elastic properties during optimization (v = —0.4).

4.1. Designing 2D NPR metamaterials with one constituent material

The first example presents the topology optimization of a 2D
unit cell with a target Poisson’s ratio equal to v = —0.4. The
evolution history of the geometry along with the resulted Poisson’s
ratio is provided with the plot of the objective function, as shown in
Fig. 7. The optimization starts with an initial design with multiple
holes of void. The prescribed elastic properties targets are set as
follows: Cf;;; = 0.2 GPa, (j;,, = —0.08 GPa and Cj,,, =
0.2 GPa, which lead to a desired negative Poisson’s ratio equal
to —0.4. The weight factors of the optimization problem are set
to be w1111 = 0.5, W22 = 0.5, and Wiz = 5 and the
volume constraint is 60%. Table 3 shows the optimal design of
the unit cell, a 3-by-3 assembled periodic microstructure, and the
corresponding effective properties. The iteration history, as well as
selected intermediate results, are presented in Fig. 7. The change
of the elastic properties with the iteration number is plotted in
Fig. 8. During the optimization process, it can be seen that the
least-square objective function is minimized gradually and finally
reached zero in Fig. 7. The elastic stiffness constants reach the
targets after approximately 65 iterations as shown in Fig. 8. The
value of the Poisson’s ratio for the optimal design becomes —0.4
as it was set to be. The result will be validated through experiment
tests provided in Section 5.

Due to the limitations of steepest descent method and the fact
that conventional level set methods do not provide nucleation
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Table 3
v = —0.4: unit cell (left), 3 x 3 array (middle) and effective elastic properties (right) of the optimized design.
Unit cell 3 x 3 structure Elasticity matrix (GPa)
0.194  —0.078 0
cH=|-0.078 0.194 0
0 0 0.036
mechanism for new holes, the design results strongly depend Table 4 .
on the initial guess. A parametric study is carried out with Parameters for different cases.
same problem setting but different initial designs. In each of the Case Cf111(GPa) G2, (GPa) Ci1p2 (GPa) v 4
following cases (Table 4), all the parameters were fixed, apart from 1 0.2 0.2 —0.04 -0.2 50%
the initial design, for better comparison. The results are shown in 2 0.2 0.2 —0.1 =05 40%
Tables 5-7 3 0.2 0.2 —0.1 -5 50%

The resulted design will not always have the desired elastic
properties. Since the material that is used for the current

Table 5
Case 1: Optimal results from different initial designs with v = —0.2 and V; = 50%.

Initial design Unit cell 3 x 3 structure Elasticity matrix (GPa)

0.196 —0.039 0
cf=1-0039 0.19 0
0 0 0.010

0.182 —0.040 0

cH =1|-0040 0.182 0
0 0 0.018
Table 6
Case 2: Optimal results from different initial designs with v = —0.5 and V; = 40%.
Initial design Unit cell 3 x 3 structure Elasticity matrix (GPa)

0.093 —0.034 0
CH=1-0034 0.144 0
0 0 0.005

s e puse

0.128 —0.062 0
cH=]-0062 0.128 0
0 0 0.009




22 P. Vogiatzis et al. /| Computer-Aided Design 83 (2017) 15-32

Table 7
Case 3: Optimal results from different initial designs with v = —0.5 and V; = 50%.

Initial design Unit cell

3 x 3 structure

Elasticity matrix (GPa)

0.167 —0.069 0
CH=|-0069 0.164 0
0 0 0.015

0.176 —0.073 0
cH=1-0073 0.177 0

0 0 0.018

Table 8

Optimal designs for the same Poisson’s ratio —0.5 and volume fraction but different targets for the elasticity tensors.

Unit cell 1 3 x 3 structure

Elasticity matrix (GPa)

0.149 —0.072 0
cH =1-0072 0.150 0

0 0 0.012

Unit cell 2 3 x 3 structure

Elasticity matrix (GPa)

0.109 —0.038 0
cH=1-0038 0.118 0

0 0 0.005

investigation has a specific Young’s modulus of 0.91 GPa and v =
0.3, a design full of material will show Cy11; = 1 GPa.

If target stiffness constant is set to be Cj;;; = 1 GPa, the
optimization will be able to offer such a behavior only if no
volume constraint has been applied and the result would be full
of material. But generally, it is not always possible to know a
priori whether the elastic stiffness constant will be able to hit
the specified targets in the least square objective function. In
addition to that, an optimization with prescribed properties for the
3 elastic entries and a volume constraint usually result in a trade-
off design without getting the desired effective properties. In case
of not hitting the targets, one can get important feedback from the
resulted geometry and change the problem settings accordingly.
Having all the parameters along with the initial design constant,
changing only the targets will drive to different designs and elastic
tensors. In this section, two unit cells will be optimized to have
the same Poisson’s ratio —0.5 and same volume fraction but with
different target for the elasticity tensors. The target elastic stiffness
constants are set to be Cj;;; = 0.2 GPa, Cj;,, = —0.1 GPa, and
(559, = 0.2 GPa for unit cell 1, and for unit cell 2, the targets would
be Cf;; = 0.1GPa, Cf},, = —0.05 GPa, and C3,,, = 0.1 GPa. The
results are shown in Table 8.

This section provides a series of examples with the same initial
design, a 1-by-1 unit cell with 4 rows of 16 equally distributed
holes, and the same targets for elastic stiffness constants C{;;; and
(559, A parametric study can be helpful for the designer in terms of
selecting the appropriate design or by giving important feedback
for improving the optimization procedure. In this example,
changing the desired Poisson’s ratio (v) and the volume constraint
(V) will drive the optimization to different results, giving an
overall understanding of the possible patterns. For convenient
comparison of the results, all other parameters were kept constant.
By having v as a variable, the prescribed elastic properties will be
transformed into:

Cfyy =0.2GPa,  Cfy,, = —02vGPa, (i, =0.2GPa.

Selected results of the parametric study are shown in Fig. 9.
It is worth noting that not all of the designs can reach the target
of elastic tensors, or in other words, not all of the designs have
the desired Poisson’s ratio. Topology optimization is usually for
continuum structures [18], while the design with Poisson’s ratio
equal to —1 may exist in a form of rigid body mechanisms. Besides
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Fig. 10. The (a) Initial and (b) Final design of a 2D NPR metamaterial. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

the shape and topology of the unit cell, the effective Poisson’s ratio
also depends on how the internal structure deforms when the unit
cell is loaded, and where and how the load is applied.

4.2. Designing 2D NPR metamaterials with multiple constituent
materials

The reconcile level set method introduced in Section 3 is
employed to optimize the unit cell. One additional material with
a lower Young’s Modulus is introduced. So, the problem is to
simultaneously optimize the distribution of both the hard material
with E; = 1 GPa and the soft material with Es = 0.2 GPa.
The void is represented with a dummy material with E, =
10~% GPa. The volume fractions for the hard and soft material are
45% and 15%, respectively. The targeted formulation is similar to
the one in the single-material optimization with targets : C;;; =
0.2 GPa, Cj},, = —0.1GPa, and C3,,, = 0.2 GPa and target
Poisson’s ratio v = —0.5. The initial design is shown in Fig. 10(a)
and the final design is shown in Fig. 10(b), where the green color
refers to the hard material and the red color to the soft material.
The 3-by-3 structures and elastic tensor are shown in Table 9.
The iteration history, as well as selected intermediate result, are
plotted in Fig. 11. As can be seen in the final design, the soft
material is distributed in a way which acts as de facto hinges
undergoing large deformation to achieve negative Poisson’s ratio
without sacrificing the stiffness of the unit cell. In this example, the
resulted Poisson’s ratio reaches —0.38, a value that will be verified
in the next section.

In another numerical test, the total volume fraction is fixed at
60%, the different arrangement for volume fraction of hard material
and soft material is investigated through following examples: (a)
40% for the hard material and 20% for the soft material; (b) 35%
for the hard material and 25% for the soft material; (c) 30% for both
hard and soft materials. The final designs of the unit cells are shown
in Fig. 12.

4.3. Designing 3D NPR metamaterial with one constituent material

The problem formulation has been extended in order to obtain
a 3D unit cell with negative Poisson’s ratio. The design domain
consists of 40 x 40 x 40 elements and the initial design has
uniformly distributed holes. The volume constraint is 25% and the
weight factors follow the problem formulation of the 2D cases. In
3D cases, 6 elastic property targets have to be prescribed and, in
the current optimization, are set as follows:

Cii1p = 0.09 GPa, C5y9, = 0.09 GPa,
(3333 =0.09GPa  Cjj,, = —0.03 GPa,
Cii33 = —0.03GPa (3533 = —0.03 GPa.

The above values imply a design with Poisson’s ratio v = —0.5 in
all three planes.

The initial design along with the obtained negative Poisson’s
ratio design are presented in Table 10. The estimated Poisson’s
ratio value is —0.49 in all planes (v, = —0.4947,v3 =
—0.4912, vy3 = —0.4875) according to the elasticity matrix of the
generated unit cell.

4.4, Designing 3D NPR metamaterials with multiple constituent
materials

Similar to the 2D multi-material and 3D single-material
investigation, an optimization has been formulated for a 3D multi-
material NPR design. The design domain consists of 40 x 40 x 40
elements and the initial design has now 3 material phases: a box of
hard material (E; = 1 GPa) with 4 x 4 x 4 uniformly distributed
hollow spheres of soft material (Es = 0.2 GPa); the third phase is
the void inside the hollow spheres. The volume constraint is 12%
for the hard material and 6% for the soft.

The initial design along with the obtained negative Poisson’s
ratio designs are presented in Tables 11 and 13. The full unit cell is
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Table 9

The unit cell (left), 3 x 3 array (middle) and effective properties (right) for an optimal 2D multi-material NPR design.

Unit cell

3 X 3 structure

Elasticity matrix (GPa)

0.137 —0.052 0
cH =1-0052 0.137 0
0 0 0.012

Table 10

3D single-material NPR unit cell structure: Initial (left), final (middle) designs of the unit cell and effective elastic properties (right) of the optimal design.

Initial design Unit cell

Elasticity matrix (GPa)

0.0690  —0.0223 —0.0223 0 0 0
—-0.0223  0.0690 —0.0223 0 0 0
—0.0223  —0.0223  0.0690 0 0 0
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g. 11. The optimization history of a 2D multi-material NPR design.

obtained by mirroring the design in all three directions Tables 12
and 14.

1st example of 3D multi-material NPR metamaterial: v, =
—0.30, V13 = —0.50 and V3 = —0.50.

2nd example of 3D multi-material NPR metamaterial: v; =
—0.90, V13 = —0.30 and Va3 = —0.05.

5. Numerical verification and experimental validation

5.1. Verification and validation of 2D single-material NPR metamate-
rials

The numerical verification was carried out using COMSOL
Multiphysics for a 4 x 4 cm structure with a volume fraction of
0.6 and targeted Poisson’s ratio of —0.4. The boundary conditions
are shown in Fig. 13(a), where two boundaries are supported and
a displacement equal to —0.4 cm is applied at the right end, which
is equivalent to the effect of applying a uniform horizontal strain
of ¢ = —0.1. In the simulation results, presented in Fig. 13(b), it
can be clearly seen that the structure was shrinked in both X and

a I b I C ||

Fig. 12. Optimized 2D multi-material NPR designs with different volume fractions: (a) 40% for hard material and 20% for soft material; (b) 35% for hard material, and 25%
for soft material; (c) 30% for both hard and soft materials. Green color for the hard material and red for the soft material. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Table 11

1st example of 3D multi-material NPR design: Initial design (left), final design (middle) and constructed full unit cell (right).

Initial design

1/8th of a unit cell

Assembled unit cell

00000000000000

A 0.02

-0.15

-0.2
v -0.21

Fig. 13. Numerical verification of the auxetic behavior of the NPR metamaterial: (a) (left) Boundary conditions and (b) (right) simulation results.

Table 12
Illustration of the 1st example of 3D multi-material NPR design.

Isotropic view xy-plane

S

13 3
=
ﬂ -

Y directions and the displacement on upper boundary is around
—0.16 cm which gives a Poisson’s ratio —0.4. The simulation results
corroborate that the achieved metamaterial structure has negative
Poisson’s ratiov = —0.4.

The behavior of NPR metamaterials is further validated using
experimental tests. Three prototype material structures are

fabricated using a state-of-the-art multiple material 3D printer
(Objet260 Connex, Stratasys Ltd) that allows the simultaneous
printing of multi-materials in a single print. Tango Black, a rubber-
like flexible material, is used for these structures. Compression
tests are performed using a MTS mechanical testing machine (MTS
Model43) with a 1 kN load cell. The sample is held vertically
between two metal bases. The upper and lower surface of the
specimens are coated with liquid to reduce any frictional effects
between the sample and the bases. The compression tests are
performed by lowering the loader at a rate of 0.02 mm s~!. The
deformation of the specimens is monitored using a high-resolution
digital camera.

Three selected material structures are: specimen 1 with a
volume fraction of 0.40 and targeted Poisson’s ratio of 0.80,
specimen 2 with a volume fraction of 0.60 and targeted Poisson’s
ratio of —0.40, and specimen 3 with a volume fraction of 0.60
and targeted Poisson’s ratio of —0.80. A representative sequence
of images of specimens 1 and 2 during loading is presented in
Fig. 14 at different strains ¢ = 0, —0.05, and —0.10. Fig. 14(a)
clearly shows lateral expansion of specimen 1 during compression
test, indicating a positive Poisson’s ratio. On the contrary, Fig. 14(b)
shows lateral contraction during compression test, indicating a
negative Poisson’s ratio of specimen 3. The mechanical response
of three material structures are plotted in Fig. 15(a), where
stress—strain curves show slightly nonlinear behavior when the
compression strain is larger than 0.09, especially for specimen
3. This is due to the local structure rotation and self-contacting
in specimen 3 at large strain. The lateral and axial strains are
obtained through image analysis at different strain levels. Fig. 15(b)
shows the lateral strain versus axial strain of all three specimens.
Therefore, the Poisson’s ratio can be obtained as 0.82, —0.43, and
—0.77 for three specimens, respectively, which agrees very well
with the simulated target values. These results indicate that the
experimental tests verify the simulation results.
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=-0.10

Fig. 14. Experimental images of the mechanical metamaterials at different levels of macroscopic strain: 0, —0.05, and —0.10. (a) Specimen 1 with positive Poisson’s ratio.

(b) Specimen 3 with negative Poisson’s ratio.
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Fig. 15. Mechanical response of three mechanical metamaterials. (a) Axial stress—strain curves of three specimens. (b) Lateral strain versus axial strain.

5.2. Verification and validation of 2D multi-material NPR metamate-
rial

Similarly, a numerical verification using COMSOL Multiphysics
is performed for the multi-material design with total volume
fraction of 0.6 (hard material: 45%, soft material: 15%) and resulted
Poisson’s ratio of —0.38. The boundary conditions for the 4 x
4 cm structure are the same as before, where two boundaries
are supported and a displacement equal to —0.4 cm is applied at
the right end. In the simulation (Fig. 16), the upper boundary is
deformed by —0.15 cm which is translated to a Poisson’s ratio of
—0.375, which agrees with the estimated value.

The above multi-material NPR structure is fabricated using the
same 3D printer (Objet260 Connex, Stratasys Ltd). Vero white, a
glassy polymer, is used as the hard material and Tango plus, a
rubber-like material is used as the soft material. The compression
test is performed using a MTS mechanical testing machine (MTS
Model43) with a 1 kN load cell. The experiment is conducted in a
quasi-static regime with a constant rate of 0.02 mm s~ .

A representative sequence of images of the specimen during
loading is presented in Fig. 17(a) at different strains ¢ =
0, —0.04, and —0.08. It is noted that the lateral contraction
during compression test indicates a negative Poisson’s ratio of

the specimen. The mechanical response of the multi-material
structure is plotted in Fig. 17(b), where the stress-strain curve
shows nonlinear behavior. This is due to the local structure rotation
and self-contacting at large strain. To quantify the deformation
taking place in the multi-material structure during the experiment,
an image processing software (Image]) is used to determine the
intersection points in the specimen. The deformation near the
four edges of the specimen are strongly affected by boundary
conditions. Therefore, the focus is on the behavior of the central
part of the specimen as shown in Fig. 17(a). Finally, the lateral and
axial strains are obtained at different strain levels. Fig. 17(c) shows
the lateral strain versus axial strain of both specimens, where the
Poisson’s ratio can be obtained as —0.36 verifying the simulation
result.

5.3. Verification of 3D single-material npr metamaterial

A 2 x 2 x 2 cm structure is built up from the 3D single-
material unit cell for the verification model (Table 15). The mesh is
refined, compared to the model used for the optimization process,
increasing the accuracy of the result. The boundary conditions are
the same as in the previous examples with 0.2 cm displacement
on the right end leading to tension in x direction. The resulted



P. Vogiatzis et al. /| Computer-Aided Design 83 (2017) 15-32 27

‘ ‘ A 6.52x10°
i Y e 2wl | I
v ' ol L el kel b el ke 0.02
] [“l [~ /j . ‘/j 8, ‘/‘\ TP '/j’ ha™.
| ' ' n 0.04
V [ s l 0.06
l [“l [H 0.08
; s 1 01
=1l=l1l=
~ ” ' 0.12
[ ] [ “ 0.14
st [n.‘ [ ... .... , 016
>4 W -0.18
. | "w l 1t o

slepsile ersberalarale
. >§ bon b -
~ .l l" by &é l . [‘
.ii @ >
% = 1 ' - -
o : P84
; Tt
=
£=-0. 04 £=-0.08
b T T T T C 0.00 T T T T
30 - e Multi-material NPR structure 1 n test results
5[ .
© L}
< £ .001 | _
g 20+ 4 &
& g =-0.36
£ 5L i 3
3 3
2 E -0.02 | -
€
s 10 4 z
z
L]
5 4
-
-0.03 ]
0 L L L 1 1 N 1 1 . 1
000  -0.02  -004  -006 -0.08  -0.10 0.00 002 004 -006 0.08
Nominal Axial Strain Nominal Axial Strain

Fig. 17. Compression test for multi-material NPR structure. (a) Experimental images of the mechanical metamaterials at different levels of macroscopic strain: 0, —0.04,
and —0.8. (b) Axial stress-strain curve. (c) Lateral strain versus axial strain.

Table 13
2nd example of 3D multi-material NPR design: Initial design (left), final design (middle) and constructed full unit cell (right).

Initial design 1/8th of a unit cell Assembled unit cell
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Fig. 18. Numerical verification of 3D NPR structure (xy-plane): (a) before (left) and (b) after (right) a displacement is applied in x direction.

Table 14
[lustration of the 2nd example of 3D multi-material NPR design.

Table 15
3D single material: Full unit cell assembled intoa 2 x 2 x 2 structure.

Isotropic view xy-plane

Unit cell 2 X 2 x 2 structure

displacement in the y direction is 0.1 cm and the Poisson’s ratio
is close to the estimation of —0.49. The structure’ deformation
(xy-plane) is demonstrated in Fig. 18. The structure has the same
behavior in all 3 directions.

5.4. Verification of 3D multi-material NPR metamaterials

A 2 x 2 x 2 cm 3D multi-material structure, with refined mesh,
is used for verification (Table 16).

1st 3D multi-material NPR metamaterial example

The boundary conditions are the same as in the previous
examples with 0.2 cm displacement on the right end leading to
tension in x direction (Figs. 19-20). The resulted displacement in y
direction is 0.06 cm and the Poisson’s ratio verifies the estimation
of vi; = —0.30. The displacement in z direction is 0.10 cm that
agrees well with the estimated Poisson’s ratio of vi3 = —0.50.
Furthermore, a second simulation is performed by applying a
0.2 cm displacement in y direction for obtaining the last Poisson’s

Table 16
The 1st example of 3D multi-material NPR metamaterial: Full unit cell assembled
intoa2 x 2 x 2 cm structure.

Unit cell 2 X 2 x 2 cm structure

ratio of the structure (Fig. 21). The structure deforms by 0.09 cm in
z direction showing that v,3 = —0.45.



P. Vogiatzis et al. /| Computer-Aided Design 83 (2017) 15-32 29

Table 17
The 2nd example of 3D multi-material NPR metamaterial: Full unit cell (left)
assembled intoa 2 x 2 x 2 cm structure.

Unit cell 2 x 2 x 2 cm structure

2nd 3D multi-material NPR metamaterial example

Similarly, for the second 3D multi-material design (Table 17),
the Poisson’s ratio values are: vi; = —0.95, vi3 = —0.3 and
Vy3 = —0.05 (Figs. 22-24).

6. Conclusions

This paper proposes a level set based method for topology opti-
mization of both single and multiple-material NPR metamaterials.
For multi-material topology optimization, the conventional level
set method is advanced with a new approach exploiting the recon-
ciled level set (RLS) method. The proposed method simplifies the
conventional ‘color’ level set method by evolving each individual
material with a single level set function and reconciling the re-
sulted level set functions with the Merriman-Bence-Osher (MBO)
operator. The NPR metamaterial design problem is formulated as a
least square minimization problem using level set representation,
which transforms the original design problem into a problem of
finding the steady solution of the Hamilton-Jacobi equation. The
shape sensitivity is rigorously derived based on the complete weak
form of the governing equation with a weak imposition of Dirichlet
boundary conditions. The 2D benchmark examples demonstrate
the performance of the proposed method for metamaterial design.
Both numerical simulations and physical experiments prove that
the achieved design exhibit the desired auxetic behavior. The 2D
single material designs follow the patterns of benchmark examples
in existing literature. Novel designs are achieved for the 2D multi-
material, and especially 3D single and multi-material metamate-
rials. The 3D design is enriching the currently limited available 3D
designs with negative Poisson’s ratio. The 3D multi-material design

Fig. 20. Numerical verification of the 1st example of 3D multi-material NPR structure (xz-plane): (a) before (left) and (b) after (right) a displacement is applied in x direction.
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Fig.21. Numerical verification of the 1st example of 3D multi-material NPR structure (yz-plane): (a) before (left) and (b) after (right) a displacement is applied in y direction.

Fig.23. Numerical verification of the 2nd example of 3D multi-material NPR structure (xz-plane): (a) before (left) and (b) after (right) a displacement is applied in x direction.

is innovative, and a new group of 3D multi-material microstruc- erated. One limitation in current approach is that it was hard to re-
tures with a different Poisson’s ratio in each direction can be gen- move the supporting material when the 3D designs are fabricated
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Fig.24. Numerical verification of the 2nd example of 3D multi-material NPR structure (yz-plane): (a) before (left) and (b) after (right) a displacement is applied in y direction.

through additive manufacturing. In our future work, we will take
into account such additive manufacturing constraints in the topol-
ogy design process.
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