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There has been much debate on the choice for the representative wall thickness for the thin-shell model,
although this model has demonstrated remarkable success in capturing many types of behavior of single-
walled carbon nanotubes (SWNTs), in determining the buckling strains under compression, torsion, and
bending, in particular. This analysis, using the Tersoff-Brenner potential and ab initio calculations, shows
that the elasticity of the model thin shell evolves from isotropic to square symmetric with the decreasing
tube diameter, leading to significant diameter dependence for all the elastic moduli and the representative
wall thickness. Furthermore, the elastic moduli of multiwalled carbon nanotubes of diameters up to 10 nm

are also size dependent.
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Much of the research interest in carbon nanotubes was
generated by their extreme (e.g., the axial Young’s modu-
lus and tensile failure strength) and versatile (semiconduct-
ing or metallic, for example) properties. It has been
predicted, using molecular dynamics (MD) simulations,
tight-binding, and ab initio calculations, that carbon nano-
tubes have an extremely large Young’s moduli [1-6], and
that their axial failure strains are as high as 16%-24%
[2,7,8]. These theoretical predictions have led to continu-
ing efforts to measure the mechanical properties of carbon
nanotubes, Young’s modulus, in particular, utilizing the
behavior of carbon nanotubes in, for example, bending
vibration [9,10], bending deflection [11], and axial tension
[12]. All these measurements were indirect as Young’s
modulus was estimated with the measured data, using
some well-known relations from the conventional contin-
uum theories of beams and/or tubes, and the use of these
relations, inapplicable in many situations [10,13,14], has
contributed significantly to the large scattering (0.1-
2.0 TPa) of such indirectly measured values of Young’s
modulus. This has, in part, inspired the contemporary
development of continuum models applicable for carbon
nanotubes, and notably, Yakobson, Brabec, and Bernholc
(YBB) [2] are accredited for developing the continuum
thin-shell model for SWNTs. They have modeled a SWNT
as a thin shell rolled up from a graphitic monolayer without
stretching, and they calculated, using the Tersoff-Brenner
potential, the minimum energy by relaxing the rolled
structure to its optimized configuration, called the preen-
ergy W, of the SWNT, and the excess energy W; when the
SWNT is subsequently subjected to an axial tensile strain
€. They have further equated the second derivative of W,
with respect to the tube curvature « and the second deriva-
tive of W, with respect to the strain €, respectively, to the
bending rigidity Dy, = Yh?/12(1 — v?) and the tensile ri-
gidity D, = Yh, expressed in terms of the Young’s modu-
lus Y, Poisson’s ratio v, and thickness / of a linearly elastic
and isotropic thin plate modeling the graphitic monolayer,
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and they have thus obtained the wall thickness h =
0.066 nm, ultrathin compared with the C-C bond length
0.142 nm, and the axial Young’s modulus Y = 5.5 TPa,
unusually large compared with the largest Young’s modu-
lus ~1 TPa for all previously known materials, as well as
the Poisson’s ratio » = 0.19. They have demonstrated
remarkable success of this model in capturing many be-
haviors of SWNTs, in determining the buckling strains
under compression, torsion, and bending, in particular,
judged by the agreement with their MD simulations using
the Tersoff-Brenner potential [2]. We note the earlier work
of Robertson et al. [1] which shows, using both Tersoff-
Brenner potential and first-principles local-density func-
tional methods, that the 1/r> dependence of the preenergy
W, derived from the linear elastic theory of thin plates
remains valid for SWNTs of radii » down to ~0.15 nm,
and we note that the 1/r? dependence of the preenergy W,
has also been confirmed by ab initio calculations [5,6].
The YBB thin-shell model [2] has generated much
debate, centered around the wall thickness of the contin-
uum models for SWNTs, referred to as Yakobson’s para-
dox [15]. Many researchers have modeled MWNTs as
assemblies of concentric shells, each modeling a constitu-
ent SWNT, and they have taken the average interwall
spacing § = 0.34 nm to be the representative thickness
for each of the concentric shells. Setting the thickness & =
0.34 nm in the continuum shell model for SWNTs leads to
the theoretical prediction that Young’s moduli of SWNTs
and MWNTs are approximately the same, ~1 TPa [3], but
the preenergy of such a shell is, however, found to be about
26 times as large as the preenergy of SWNTs calculated
using atomistic models. We have noted that the smallest
SWNTs are reported to be ~0.4 nm in diameter [16].
Furthermore, the high resolution transmission electron
microscopy (HRTEM) studies [17,18] show that both
SWNTs and MWNTs can sustain severe bending, buck-
ling, kinking, or rippling elastically, leading to the mini-
mum deformation curvature radius estimated as small as
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~0.15 nm, and the corresponding maximum strain 4 /2r,
as predicted by the continuum model, would have, how-
ever, far exceeded the theoretically predicted fracture
strain ~24% of SWNTs, if the wall thickness is taken to
be & = 0.34 nm. On the other hand, with & = 0.066 nm,
the corresponding maximum strain is ~22%. There have
been some proposals to avoid introducing a thickness
[4,15,19], for instance, by introducing the tensile and
bending rigidities of SWNTs as two independent mechani-
cal properties [19], not derivable from other elastic moduli,
or by modeling a SWNT as a two-dimensional continuum
[4,20], instead of three dimensional. Nevertheless, these
proposals do not offer the same advantages that the YBB
thin-shell model has brought to us because of many well-
established theoretical results available in the vast litera-
ture for continuum shells [21].

The merits of a continuum model for a nanoscopic
system are primarily twofold: (1) consistent in reproducing
some basic properties known from reliable ab initio calcu-
lations or from well-tested semiempirical models (calibra-
tion) and (2) convenient in predicting such behaviors that
are too expensive, if not prohibitively expensive, to be
investigated by reliable ab initio calculations or well-
established atomistic models. To validate the YBB thin-
shell model, we require that the thin-shell model produce
the same energies as predicted by an atomistic model [here
we have chosen the Tersoff-Brenner potential for the bene-
fit of comparison, as it was used by both Robertson et al.
[1] and Yakobson et al. [2]] for (i) rolling, (ii) uniaxial
tension or compression, (iii) radial dilation, and (iv) axial
torsion [22], and the same corresponding rigidities. We first
reproduced the YBB model values for the axial Young’s
modulus and wall thickness, by requiring that the thin-shell
model produce the same bending and axial tension or
compression rigidities as calculated using the Tersoff-
Brenner potential. To our surprise, however, the shear
modulus G derived from these values, using the isotropic
elasticity relation G = Y/2(1 + v), is found significantly
larger than the shear modulus G obtained by requiring that
the thin-shell model lead to the same axial torsion rigidity
as calculated using the Tersoff-Brenner potential, and this
difference is as large as 18% for SWNTs of diameter
0.4 nm, while the Poisson’s ratios obtained from uniaxial
and circumferential tensions or compressions exhibit sig-
nificant dependence upon the chirality. We note that the
invalidity of the modulus relation G = 5;'; indicates the
breakdown of the elastic isotropy, and we note, on the other
hand, that the elastic isotropy is valid for a graphitic
monolayer, from which a thin shell is rolled up to model
a SWNT in the development of the YBB thin-shell model.
To further illustrate this point, we plot in Fig. 1(a) the
prestrains €, and €9, of relaxed SWNTSs versus the tube
diameter predicted by the Tersoff-Brenner potential,
namely, the axial and circumferential relative structural
change reference to their corresponding rolled-up struc-
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FIG. 1 (color online). Ab initio validation for the TB-potential
molecular dynamics simulations: (a) Prestrains of relaxed
SWNTs. (b) Excess energies vs axial and circumferential ex-
tensions for the (4, 4) SWNT.

tures, and we observe that the circumferential strain €9, is
one order larger than the axial strain €}, and is as large as
~3% for small SWNTs. We note that our results show no
chirality dependence in the characteristics of rolling-
induced structural changes. It is known that the tangent
Young’s modulus of a graphitic monolayer with a tensile
strain of 3% is about 25% smaller than that without strains.
This has therefore motivated us to validate the thin-shell
model of SWNTs by considering orthotropic symmetry,
instead of isotropic symmetry, with the axial and circum-
ferential directions being privileged. Correspondingly, the
in-shell strains €;; and stresses o;; are related by €, =
on/Y —von/Y', €n = 0p/Y = voy /Y, and 2€); =
01,/ G, with five independent elastic moduli, i.e., the axial
and circumferential Young’s moduli Y and Y*, the shear
modulus G, and the two Poisson’s ratios v and v*.

We denote by Wy (k) the calculated preenergy per atom
of a SWNT of diameter d or curvature k = 2/d equiva-
lently, and by 1/w the in-shell area density of atom, i.e.,
the atoms per in-shell area. By equating the second deriva-
tive of Wy(k)/w with respect to the curvature to the bend-
ing rigidity of the model shell, we obtain

Y*h3 1 9*Wy(x) W
12(1—wv*) © dk*
We note that the wall thickness / and the elastic moduli Y7,
v and v* in (1), as well as those in (2)—(4), are not
preassumed to be independent of the tube diameter d and
that the bending rigidity is defined in reference to the
SWNT itself, instead of the graphitic monolayer. For a
SWNT subjected to a prescribed axial strain e without
the radial constraint, we calculate the excess energy
Wi (e) per atom and the corresponding circumferential
strain € and we thus evaluate the Poisson’s ratio v and
the axial rigidity Yh, respectively, as follows:
* 2
y=limS,  yh= L@
=0 € we=0 de?
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Conversely, for a SWNT subjected to a prescribed radial
strain €* without the axial constraint, we calculate the
excess energy W,(€*) per atom and the axial strain € and
we compute the Poisson’s ratio »* and the circumferential
rigidity Y*h as below:

1 d*W,(€*)

Y*h = — lim
we=0 de*?

v = —lim —, 3)
e'=0€

Furthermore, we calculate the excess energy Ws(¢) per

atom subjected to a prescribed axial torsion angle ¢ per

unit axial length and we invoke the following relation from

the continuum theory of cylindric thin shells:

1 h? 1. d*Ws(e)
“onad?(1+ L) = im &3¢ 4
Jone(1+ ) = Jim©o @

With the calculated energies W,, W;, W,, and W3 for
armchair (n,n), n=23,...,30, zigzag (n,0), n=
4,...,41, and 17 randomly chosen chiral SWNTs, we
compute all the six model parameters Y, Y*, G, v, v*,
and & using the six relations in (1)—(4) and we plot the
results in Figs. 2(a)—2(d). From them we have the follow-
ing four observations:

(1) The Young’s and shear moduli all increase with the
increasing diameter, and their limit values Y, = Y;, =
5.07 TPa and G, = 2.19 TPa are the same as those of a
graphite monolayer. Small tubes can have as much as
~23% smaller shear moduli and ~10% smaller Young’s
moduli.

(2) The Poisson’s ratios and wall thickness are also
diameter dependent and their limit values are v, =
0.158 and %, = 0.0665 nm, respectively, compared with
the Poisson’s ratio 0.165 for graphite. Both the Poisson’s
ratios and wall thickness can deviate as much as ~7% from
their limiting values.

(3) The negligible differences between Y* and Y and
between v* and v for all tubes indicate that SWNTSs have
the square symmetry, higher than the orthotropy symmetry.
The substantial deviation of G = Y/2(1 + v) from G, as
much as ~18% for small tubes, exhibits the strong non-
isotropic effect of small SWNTs, although the isotropy is
observed for larger SWNTs.

(4) The tube chirality, particularly armchair and zigzag,
has notable effect on the Poisson’s ratio, but not on the
Young’s and shear moduli, nor on the wall thickness.

The underlined mechanism for the material symmetry
evolution from isotropic to square symmetric and for the
associated phenomena observed above is the significant
change in structure taking place during rolling, as indicated
by the results shown in Fig. 1(a) both from ab initio
calculations [6] and using the Tersoff-Brenner potential.
For further validation of our results from the Tersoff-
Brenner potential, we have also performed ab initio calcu-
lations for three armchair SWNTs (4, 4), (6, 6), and (8, 8)
on the density functional theory (DFT) levels, using the
local density with the ultrasoft pseudopotentials approxi-
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FIG. 2 (color online). Diameter dependence of all the thin-
shell model parameters: (a) the axial and circumferential
Young’s moduli, (b) the shear modulus, (c) Poisson’s ratios,
and (d) the wall thickness.

mation and the plane-wave basis set [23]. As shown in
Fig. 1(a), the structural changes predicted from these cal-
culations agree remarkably well with our results from the
Tersoff-Brenner potential. Furthermore, we have compared
the energies from ab initio calculations with those obtained
using the Tersoff-Brenner potential for various SWNTs,
and their excellent agreements are illustrated in Fig. 1(b)
with the plots of the excess energies versus the axial and
circumferential strains for the (4,4) SWNT. The indiffer-
ence between the excess energies due to axial and circum-
ferential deformations supports the results stated above
that the axial Young’s modulus Y and the circumferential
Young’s modulus Y* are apparently the same and so are the
corresponding two Poisson’s ratios. We note the previous
observations [1,4,6,24,25] of the increases of the Young’s
modulus with the increasing tube diameter and the reported
variations of Poisson’s ratio [24,25].

We note the importance of this size dependence,
although it is insignificant for SWNTs of diameters larger
than 1.5 nm, because SWNTs are reported to have diam-
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FIG. 3 (color online). Size dependence of axial and bending
Young’s moduli of MWNTs.

eters typically in the range: 0.4—2 nm, and because it has
been shown by MD simulations [26] that larger SWNTs
may collapse from the circular to a dumbbell cross section,
with the maximal local curvature radius of ~1 nm. We
note that larger SWNTSs with cylindrical cross sections are
stable as constituent components of MWNTs with diame-
ters ranging from 0.4 nm to several tens of nanometers, and
we have found, on the other hand, that the mechanical
properties of MWNTs exhibit significant size dependence
as well, primarily due to the inhomogeneous nature of
MWNTs as structural assemblies of SWNTs, such as the
reduction of the interwall spacing with the increasing
diameter up to ~10 nm [27]. As an illustrative example,
let us consider a continuum hollow cylinder of inner and
outer diameters d; and d,, to model an N-walled carbon
nanotube, and we define the axial Young’s modulus Y, and
the bending modulus Y, of this model cylinder by requiring
that its axial and bending rigidities, D, and D,,, be the same
as those of the MWNT as a structural assembly of SWNTs.
This leads to Y, =43 Y;h;d;/(d; — d}) and Y, =
8L, Y;h;d;(d; + h3)/(dy — df), respectively, with Y;,
dj, and h; being the Young’s modulus, diameter, and
thickness of the jth constituent SWNT. There have been
discussions [28,29] on the choices for the inner and outer
diameters d; and d,,, notably (i) setting d; and d,, to be the
measured diameters d; and dy of the innermost and out-
ermost constituent shells of the MWNT, as was done in
many experimental reports [9], or (ii) setting d; = d; — §
and d, = dy + 5 with § = 0.34 nm, and on the variations
of the so-derived properties of MWNTs with the wall
number. We show in Fig. 3, using the observed dependence
of interwall spacing versus diameter [27], that both Y, and
Y, exhibit the size dependence for MWNTSs of diameters
up to ~10 nm, regardless of the choice for the diameters d;
and d,,.

We conclude this Letter by pointing out that the thin-
shell model of SWNTs have helped to reproduce many

complex mechanical phenomena of carbon nanotubes
observed in experiments, such as buckling of SWNT
[2], unstable behavior or phase transformations of SWNT
bundles [30], and bending and torsional ripples of MWNTs
[14,31], and may guide to create new structural materials
that have unusual or multifunctional properties.
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