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Abstract

Single-walled carbon nanotubes (SWNTs) in crystalline bundles may exhibit a transition in

which the cross-sections of tubes turn from perfectly circular to hexagonal, depending upon

the tube diameter and externally applied pressure, and this structural instability leads to an

abrupt change in the bulk elastic properties of SWNT bundles. This paper presents a hybrid

atom/continuum model to study the bulk elastic properties of SWNT bundles, and the

predicted characteristics of this structural instability agree well with the experimental

observations available in the literature. Linearized bulk elastic properties of SWNT bundles

with respect to a stable configuration are transversely isotropic and hence can be characterized

by five independent elastic moduli. A complete set of these five moduli is predicted for the first

time. It is found that the deformability of tube cross-sections play a dominant role in

characterizing the transverse moduli.
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1. Introduction

Single-walled carbon nanotubes (SWNTs) are often found in self-organized
bundles (Thess et al., 1996; see also López et al., 2001), i.e., a set of aligned tubes
arranged in a two-dimensional triangular lattice in the plane perpendicular to their
common axes. SWNT bundles have found some applications (cf. Lee et al., 2001),
such as field emission electron sources for flat panel display (Baughman et al., 2002),
to which both mechanical and electrical properties are important and coupled. It has
been predicted (Charlier et al., 1996) that radial deformation, resulting in
polygonized cross-sections, alters the band gap, leading to changes in the electron
transport characteristics of carbon nanotubes. These observations have, in part,
motivated a number of recent investigations to determine the linearized elastic
moduli of SWNT bundles as bulk materials. Denote by x3 the coordinate in parallel
to the common axes of tubes and x1–O–x2 the transverse plane. The first
experimental value of shear moduli of SWNT bundle with tube diameters about
1.4 nm (nanometers) was given by Salvetat et al. (1999). It is about the out-of-plane
shear moduli c44, with values of 0.7–6.5GPa ð�50%Þ, estimated from the force-
deflection measurements of SWNT bundles as suspended beams loaded by an atomic
force microscopy (AFM). Interestingly, they have also given a theoretical but
remarkably overestimated prediction 19.5GPa. A very recent work of Lasjaunias
et al. (2003) gives the estimate of the shear modulus c44 ¼ 1:1–1.2 and 2.0GPa for
SWNT bundle samples produced by the arc discharge and laser vaporization
techniques, respectively. Regarding the in-plane shear modulus c66, there have only
some model results, such as those by Popov et al. (2000) and Saether et al. (2003),
with the predicted values 5.3 and 22.5GPa, respectively. Saether et al. (2003) and
Saether (2003) calculated the area modulus, shear modulus, Young’s modulus,
normal stiffness and Poisson’s ratio, all within the transverse plane of a SWNT
bundle, using a model in which each tube is treated as a rigid continuum tube with
perfectly circular cross-section and the intertube van der Waals interaction is
modeled by the Lennard–Jones potential. Their calculated values for the five in-
plane moduli are self-consistent for transverse isotropy having only two independent
values, as expected for a material of hexagonal symmetry (see, for instance, Hashin
and Rosen, 1964; He and Zheng, 1996), but these values show significant disparities
with those computed using a force-constant lattice dynamic model by Popov et al.
(2000). We have noted that the earlier work of Tersoff and Ruoff (1994), using the
Tersoff potential (a valence–force model) for the intratube atomic interactions and a
Lennard–Jones type potential for the intertube interactions, and the work of Lu
(1997), using force constants for the intratube interaction and a Lennard–Jones 6–12
potential for the intertube interaction, have both led to significantly smaller values
than those obtained by Saether et al. (2003), Saether (2003) and Popov et al. (2000).
Using a valence–force model to treat the atomic interactions within each tube and

the Lennard–Jones model for van der Waals interactions between tubes, Tersoff and
Ruoff (1994) predicts that tubes in SWNT bundles of diameters over 2.5 nm flatten
against each other under the van der Waals attraction, forming a honeycomb
structure. The polygonization of cross-sections may lead to substantial changes in
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their mechanical and other physical properties (Charlier et al., 1996). It is noted that
tubes with different cross-sections exhibit different s�–p� hybridization and
correspondingly, have different electronic structures and properties (see for instance
Lammert et al., 2000). Not until recently, has a high-resolution transmission electron
microscopy (HRTEM) study (see for instance López et al., 2001) brought the first
direct evidence, to our best knowledge, that single-walled carbon nanotubes, in
bundles, with diameter as small as 1.7 nm can have polygonized cross-sections in
their non-stressed states. On the other hand, there have been strong evidences from
Raman (Venkateswaran et al., 1999; Peters et al., 2000) and diffraction (Tang et al.,
2000; Rols et al., 2001) on structural changes of SWNT bundles in response to
pressure. Venkateswaran et al. (1999) reported the variations of the radial and
tangential vibrational modes versus pressure and the disappearance of the radial
mode intensity under high pressure. Peters et al. (2000) reported a structural
transition of SWNTs under the pressure of 1.7GPa, basing on their observed Raman
shifts. Ru (2000a) suggested a simple model based on Euler’s buckling formula to
explain the critical pressure of hexagonization, without taking account of van der
Waals interaction. The first-principle calculations by Chan et al. (2003) show that
hexagonization is a just metastable state, the energy-favored transformed shapes
upon pressure are elliptical at first, and then further flattened into shape like a 400-m
track under higher pressure.
Tubes in a bundle interact with each other through van der Waals forces. Plano-

parallel faceting surfaces between adjacent tubes have a lower van der Waals
interaction energy than that between two adjacent perfectly circular tubes, a fact that
favors polygonizing. The intratube interaction energy increases, however, as the tube
section distorts from the circular cross-section, opposing polygonization. This
deformation energy decreases with increasing tube diameter, eventually yielding to
the optimization of the intertube interaction energy, and thus lattices of hexagonal
SWNTs in bundles are more stable than the lattices of the corresponding circular
tubes, for tubes of large diameters. The characteristics of the lattice instability have
critical implications on the elastic moduli, resulting from linearization of the elastic
behavior of SWNT bundles in reference to a chosen stable state.
In the present work, we first study the instability characteristics of the lattice of

SWNT bundles by analyzing the balance between the intratube atomic interactions
and the intertube van der Waals interactions, using a hybrid atom/continuum (HAC)
model, in which the intratube interaction energy is calculated using the molecular-
dynamics-based continuum approach while the intertube interaction is modeled by a
usual Lennard–Jones type potential. We present this HAC model in Section 2 and
the predicted onset of polygonalization versus the tube diameter and pressure. In
particular, this model predicts that tube cross-sections of a perfect lattice of SWNT
bundles turn from perfectly circular to hexagonal with rounded corners, as the tube
diameter increases to 2.1 nm, which is larger than 1.7 nm as observed by López et al.
(2001) in their HRTEM study and smaller than 2.5 nm as predicted by Tersoff and
Ruoff (1994) using an atomistic approach. We note that localized structural
imperfections often promote instabilities, and we show, using an illustrative example,
that a slightly perturbed lattice would result in the onset of cross-section
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polygonalization of tubes with a considerably smaller diameter (1.8 nm, for this
example). In Sections 3 and 4, we calculate the elastic moduli of SWNT bundles in
reference to a stable configuration. Owing to their transverse isotropy, the linear
elastic properties of SWNT bundles can be completely characterized by five
independent elastic constants, i.e., the in-plane bulk modulus or compressibility, in-
plane shear modulus, axial Young’s modulus, out-of-plane Poisson’s ratio and out-
of-plane shear modulus. There have been a number of theoretical studies on moduli,
as cited previously, but have none of these studies predicted a complete set of all five
independent moduli. We predict a complete set of five moduli. We note that our
estimated compressibility of 0:025 ðGPaÞ�1 compares amazingly well with the
measured value 0:024 ðGPaÞ�1 reported by Tang et al. (2000) relatively. We also note
that the deformability of tube cross-sections plays the dominant role in characteriz-
ing the transverse moduli. Interestingly, we find that the predicted elastic properties
of SWNT bundles have the highest degree of anisotropy compared with those of all
hexagonal crystals listed in the handbook by Every and McCurdy (1992).
2. Stability analysis

The shape of the tube cross-section of SWNT bundles results from a delicate
balance between the van der Waals energy of intertube interaction and the
deformation energy associated with the distortion of the intratube atomic
arrangement. We assume that the lattice structure of tubes evolves, with increasing
either hydrostatic pressure or tube diameter, from circular to hexagonal, through an
intermediate lattice structure formed by hexagonal tubes with rounded corners, as
schematically illustrated in Fig. 1. This triangular lattice (connecting the centers of
x1

x2

T2(l2)T1(l1)
r

s

0

L

Fig. 1. A schematic illustration of a hexagonal lattice and the triangle lattice unit (the shaded portion) of

SWNT bundles with the lattice constant L and intertube spacing s. The cross-section of each tube is

hexagonal with rounded corners of the same radius r. T1 and T2 denote two adjacent tubes and l1 and l2,

their cross-sections.
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the three adjacent tubes to form a lattice unit) is characterized by the lattice constant,
L, the round corner radius, r, and the effective radius1, R, of the nearly hexagonal
cross-section. In this section, we take the representative volume to be the triangular
lattice unit with unit axial thickness, to study the stability of the lattice subjected to
in-plane pressure.
In response to the in-plane pressure with the restriction of no axial extension, the

cross-sections of SWNTs in the bundle deform through bending in the plane and
contracting along the circumference. The comparison studies, see for example
Yakobson et al. (1996), between MD simulations and continuum shell models have
shown that SWNTs can be well modeled as super-thin shells of linear elasticity with
the effective thickness2 tswnt ¼ 0:066 nm, Young’s modulus Eswnt ¼ 5:5TPa, and
Poisson’s ratio nswnt ¼ 0:19. Correspondingly, the deformation energy associated
with the distortion of the intratube atomic arrangement is taken to be the sum of
those associated with the bending and contracting deformation modes. For the
representative volume, we have the following representations for the bending and
contraction energy densities, respectively:

Ub ¼
pEswntt

3
swnt

24ð1� nswntÞO0

1

R
; U c ¼

pEswnttswntR0

2O0

R

R0
� 1

� �2

; ð1Þ

where O0 ¼
ffiffiffi
3

p
L2
0=4, L0 and R0 are the cross-section area of the representative

triangular unit, the lattice constant and the effective radius, respectively, in the
absence of pressure.
We turn now to model the intertube van der Waals interaction in the usual way

with a Lennard–Jones 6–12 pair potential between the ith and jth carbon atoms,
located respectively on two adjacent tubes

Fij ¼ A
1

2

d6
0

r12ij

�
1

r6ij

 !
; ð2Þ

where rij is the separation distance between the two atoms, and A ¼ 24:3�
10�79 Jm6 and d0 ¼ 0:383 nm are parameterized to describe interlayer forces in
graphite (see, for instance, Tersoff and Ruoff, 1994; and Girifalco et al., 2000). For
each carbon atom within the representative volume, we account for its van der Waals
interaction energy with all the atoms of adjacent tubes, and we then sum it over all
the atoms within the representative volume and divide a half of the sum by the
volume, leading to an estimate of the intertube interaction energy density Uvdw.
Direct calculations show that interaction energies from atoms of all the non-adjacent
tubes have a positive but negligible contribution3 and are thus neglected for
simplicity. To obtain an analytic representation of Uvdw for the convenience of the
1The effective radius is defined as the ratio of the circumference length of the cross-section over a fact 2p
and is equal to the actual radius if the cross-section is perfectly circular.

2We note that there have been different opinions in the literature on the choice of the wall thickness for

an equivalent continuum shell model, see Ru (2000b), and Liu et al. (2003).
3These contributions are 1.1%, 0.8%, 0.4%, 0.2% for tubes of diameters 1.0, 1.2, 1.6, 2.0 nm,

respectively.
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stability analysis, one can use an alternative approach by replacing the discrete
distribution of atoms along the tube with a continuum distribution with the same
atom density r ¼ 4

ffiffiffi
3

p
=9a2, as we did in a previous work on the proposed use of

multiwalled carbon nanotubes as ultrafast molecular oscillators (Zheng and Jiang,
2002; Zheng et al., 2002), where a ¼ 0:142 nm is the carbon–carbon (C–C) bond
length. We note the earlier use of a similar approach by Henrard et al. (1999) and
Girifalco et al. (2000) to calculate the intertube interaction energies of carbon
nanotubes and SWNT bundles. This approach leads to the following representation
for the intertube interaction energy density:

Uvdw ¼
3r2

2O0

I
l1

Z Z
T2

F12 dT2 dl1 ¼
9pAr2

16O0

I
l1

I
l2

21

64

d6
0

d11
�

1

d5

� �
dl2 dl1;

ð3Þ

where
H

l1
dl1 and

H
l2
dl2 denote the integrations over the circumferences of the cross-

sections of two adjacent tubes say T1 and T2, within the same plane perpendicular to
the common axis of the tubes,

R R
T2
dT2 denotes the area integration over the surface

of the tube T2. F12 appearing in Eq. (3) is the Lennard–Jones 6–12 potential, given in
Eq. (2), between two atoms located, respectively, on l1 and on T2, and d denotes the
distance between two atoms located on l1 and l2, respectively. To derive Eq. (3), we
have noted that the total number of atoms on a tube section of unit axial length is
equal to twice the number within one representative volume and that each tube (e.g.
T1) has 6 adjacent tubes.
We then optimize the total interaction energy density U, i.e., the sum of both the

intratube and intertube interaction energy densities, for each given lattice constant L,
by selecting the round corner radius, r, and the effective radius, R, of the nearly
hexagonal cross-section, leading to an equilibrium state together with the
corresponding total interaction energy density U�. The equilibrium state with the
lowest energy is the state with zero pressure. The in-plane strain �, measured with
respect to this state is obtained as ðL � L0Þ=L0, in which L0 is the lattice constant in
the absence of pressure. Differentiating the total interaction energy density U� with
respect to twice of the in-plane strain � leads to the corresponding pressure p and
hence the normal stresses s11 and s22

s11 ¼ s22 ¼ �p ¼
1

2

@U�

@�
: ð4Þ

The thus obtained pressure–strain relations for SWNT bundles with tube diameters
ranging from 1 to 2.1 nm are shown in Fig. 2. We note that the sharp inflection point
of each pressure–strain curve, for a fixed tube diameter, corresponds to the pressure
or strain at which the tube section changes from perfectly circular to hexagonal with
rounded corners. For instance, the pressure–strain curve for SWNT bundles with
tube diameter of 1.4 nm has a sharp inflection point near p ¼ 1:8GPa, at which it
turns from nonlinear to nearly linear with the increasing pressure, and this agrees
well with the experimental observation ðp ¼ 1:7GPaÞ (see for instance Peters et al.,
2000). A detailed examination of the lattice distortion in response to the pressure
reveals that the lattice distortion prior to the inflection point is essentially due to the
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Fig. 2. The pressure–strain relations for SWNT bundles with diameters ranging from 1.0 to 2.1 nm.
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shortening of the intertubular spacing, while the lattice distortion after the inflection
point is dominated by the tube section change. Correspondingly, the change of the
total energy is primarily attributable to the change in the van der Waals intertube
interaction energy before the inflection point, and is afterwards dominated by
the increase of the intratube deformation energy. This observation is consistent with
the plotted pressure–strain curve, considering the fact that the Lennard–Jones 6–12
potential is highly nonlinear with respect to the interatomic distance, while the
bending energy is quadratic. We have also noted that the energy contribution of
the section circumferential contraction is negligibly small in comparison with that of
the section wall bending.
We note the work of López et al. (2001) reporting their HRTEM observation of a

lattice of polygonized tubes of section diameter 1.7 nm, approximately, in a SWNT
bundle, under no externally applied pressure, and we also note the predicted larger
diameters for the onset of polygonization by atomic models, such as Tersoff and
Ruoff (1994) for diameters larger than 2.5 nm, in comparison with the onset diameter
2.1 nm predicted in the present work as shown in Fig. 2. It is, however, well-known
that structural instabilities are often affected by local minimizers of the system
energy function, which weakens the conditions for the onset of structural transition.
Also, localized structural imperfections often promote instabilities. As an illustrative
example, we have considered a slightly altered hexagonal lattice with the hexagonal
cell comprised of one central tube of diameter 1.807 nm surrounded by six tubes of
the diameter 1.797 nm yielding the mean diameter 1.800 nm. For this slightly
perturbed lattice, the pressure–strain curve plotted in Fig. 3a has two inflection
points, corresponding to the two discontinuous points on the tangent area modulus
curve shown in Fig. 3b of the pressure–strain curve. The first one near the origin
corresponds to the point where the central tube turns from perfectly circular to
nearly hexagonal and the second signals the onset of polygonalization of all the
surrounding tubes. This example illustrates the significant effect of apparently minor
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Fig. 3. The effect of a minor perturbation in the lattice upon the onset of polygonization. (a) The
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the slighted perturbed lattice.
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structural imperfections upon the onset of polygonalization of tube sections. In this
regard, we have noted the recent work of Saether (2003) concerning the effect of
random perturbations in the lattices of SWNT bundles upon their transverse elastic
moduli, using Monte Carlo simulations.
3. Transverse elastic properties of SWNT bundles

We note from Fig. 2, with surprise, that the pressure–strain curves for tubes of
different diameters nearly coincide prior to their respective inflection points, and this
implies that the in-plane bulk modulus (or area modulus) K ¼ ðc11 þ c12Þ=2 at the
origin is nearly independent of tube diameter. We have made some attempts to
understand this apparent coincidence, as summarized in Appendix A. Fitting the
pressure–strain curves near the origin, we obtain the area modulus K ¼ 40GPa.
Considering that the axial rigidity of nanotubes is comparatively very large, we
estimate the compressibility 1=K ¼ 0:025 ðGPaÞ�1, which is excellently consistent
with the measured value 0:024 ðGPaÞ�1 reported by Tang et al. (2000). In
comparison, Tersoff and Ruoff (1994), Lu (1997), Popov et al. (2000), and Saether
et al. (2003) predicted K ¼ 33:6, 18.0, 42.0, 45.8GPa, respectively. It is evident in
Fig. 2 that the tangent area modulus, K t ¼ �ð1=2Þdp=d�, suffers a sudden drop at
the inflection point. We list in Table 1 the tangent area modulus for SWNT bundles
of selected tube diameters, just after the respective inflection points, showing that the
area modulus decreases significantly with the increasing tube diameter. This indicates
that SWNT bundles of larger tube diameters are more compressible than those of
smaller tube diameters, as expected.
In the transverse plane, the linear elastic behavior of the SWNT bundles is

characterized by two independent material constants. We turn now to determine the
in-plane shear modulus c66 by considering the pure shear deformation mode,
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generated by application of tensile and compressive strain, of equal magnitude �,
along two mutually perpendicular directions of the lattice. We assume that the lattice
structure of SWNTs, in the pure (double) shear deformation mode, evolves from
circular to elliptic as schematically illustrated in Fig. 4. As the tube section turns into
elliptic, the bending energy admits the following representation, differing from that
given in Eq. ð1Þ1 for tubes of circular section:

Ub ¼
Eswntt

3
swnt

48ð1� n2swntÞO0

I
l1

dl1

R2
c

; ð5Þ

where Rc is the curvature radius of the ellipse with the two primary radii R1 and R2.
The representations for the contraction energy and the van der Waals intertube
interaction energy formally remain the same as given in Eqs. ð1Þ2 and (2),
respectively. For each pair of the given lattice constants L1 ¼ ð1� �ÞL0 and
L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �þ �2

p
L0, optimization of the total energy density by selecting R1 and R2

leads to an equilibrium state with the corresponding total interaction energy density
U�. We find that the plots of the total interaction energy density U� versus each
corresponding strain � are quadratic, and that the energy density increases
continuously with the increasing strain, as shown by an example given in Fig. 5
for such a lattice of SWNTs of tube diameter 1.4 nm. Correspondingly, the shear
response, i.e., the shear stress t versus the shear strain g ¼ �, is expected to be linear,
in sharp contrast to the strain response to the pressure characterized by an inflection
point where the tube section turns from perfectly circular to hexagonal with rounded
Fig. 4. A schematic illustration of the pure (double) shear deformation mode.

Table 1

Tangent area modulus K t of SWNT bundles with hexagonal cross-sections

D0 (nm) 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

K t (GPa) 17.7 16.8 13.6 12.5 11.8 11.2 8.02 7.66 5.92 5.80 4.80 2.38
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corners. In the shear deformation mode, the tube section turns into elliptic
immediately upon loading, as illustrated by the plot of the relative radius ratio,
R2=R0, versus the strain �, given also in Fig. 5. Differentiating the total interaction
energy density U� with respect to the strain � ¼ g yields the shear response
t ¼ @U�=@� ¼ c66g. The plot of the transverse (or in-plane) shear modulus c66 versus
the tube diameter, shown in Fig. 6, indicates that the shear modulus decreases
monotonically with the increasing tube diameter.
As a comparison, we reproduce the values of c66 ¼ ðc11 � c12Þ=2, as shown also in

Fig. 6, from the plots of c11 and c12 in Fig. 1 of Popov et al. (2000). For SWNT
bundles with tube diameter 0.94 nm, our predicted value c66 ¼ 2:14GPa is
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significantly smaller than the values 5.3 and 22.5GPa estimated by Popov et al.
(2000) and Saether et al. (2003), respectively. We have noted that in their works,
SWNTs were treated as rigid continuum tubes with perfectly circular cross-sections.
It is understandable that the assumed rigidity of the constituent tubes would render
the model bulk material substantially stiffer. Since typical SWNTs bundles have tube
diameters near 1.4 nm (Thess et al., 1996), comparing the two plots in Fig. 6 we see
that the deformability of tube cross-sections, rather than intertube spacing changes,
plays the dominant role in characterizing the transverse shear modulus. Using the
relations c11 ¼ K þ c66 and c12 ¼ K � c66, we further obtain the values of c11 and c12
and give their plots in Fig. 7.
Finally, we remark that in comparison with the studied tube diameter range

0.4–5:0 nm in the works of Tersoff and Ruoff (1994) and Popov et al. (2000), ours is
limited to 0.8–2:1 nm, because SWNT bundles with larger tube diameters are
unstable even though in the unstressed state as discussed in the previous section, and
tube diameters of typical SWNT bundles have observed (Thess et al., 1996) to be
about 1.4 nm.
4. The out-of-plane elastic properties of SWNT bundles

To characterize the linear elastic behavior of SWNT bundles with tube diameter
smaller than the transition diameter (
 2:1 nm for the present model) in the
unstressed state, we need to determine three independent elastic moduli out of
the transverse plane, in addition to the two in-plane moduli given above. Because the
intertube van der Waals interaction is very weak compared with the C–C bond
interaction, the axial Young’s modulus, E3, of a SWNT bundle as a bulk material
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can be estimated by taking account of the contribution of C–C bonds only. This
leads to

E3 ¼
pEswnttswntR0

O0
¼

pEswnttswntR0ffiffiffi
3

p
L2
0=4

¼
pEswnttswntR0ffiffiffi
3

p
ð2R0 þ s0Þ

2=4
: ð6Þ

In each of the numerical studies discussed in the previous sections, the optimized
intertube spacing s0 is found to have a value very close to 3.2 nm for the tubes of
diameters ranging from 0.8 to 2.1 nm, and we hence set s0 ¼ 3:2 nm. We now subject
the SWNT bundle to axial strain �33, and define the Poisson’s ratio n13 ¼ ��11=�33 in
terms of the transverse strain �11 ¼ ðL � L0Þ=L0 to be calculated. We note the
Poisson’s ratio of SWNTs, nswnt ¼ �ðR=R0 � 1Þ=�33 ¼ 0:19, characterizing the
change of radius R of a SWNT subjected to the axial strain �33. For each given
axial strain �33, we optimize the intertube van der Waals interaction energy to
determine the intertubular spacing s and hence the lattice constant L ¼ 2R þ s, and
this leads to the transverse strain �11 and, further, to the Poisson’s ratio n13. The
Young’s modulus E3 and the Poisson’s ratio n13 versus the tube diameter are both
plotted in Fig. 8. The monotonic decrease of the Young’s modulus is due to the fact
that the atom density in the lattice decreases monotonically with the increasing tube
diameter, while the Poisson’s ratio is expected to increase monotonically, reaching its
upper limit 0.19, the Poisson’s ratio of graphite, as the diameter approaches infinity.
Noting the following relations:

1=E1 �n12=E1 �n13=E3

�n12=E1 1=E1 �n13=E3

�n13=E3 �n13=E3 1=E3

2
64

3
75 ¼

c11 c12 c13

c12 c11 c13

c13 c13 c33

2
64

3
75
�1

ð7aÞ

or their approximations because of c11; c12; c13 � c33 (Popov et al., 2000)

E1 �
c211 � c212

c11
; n12 �

c12

c11
; E3 � c33; n13 ¼

c13

c11 þ c13
ð7bÞ
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we further obtain the values of E1; n12 and c13; c33 and give their plots in Figs. 7 and
8, respectively.
Finally, we predict the out-of-plane shear modulus c44 ð¼ c55Þ. The first estimated

value of c44 ¼ 0:7–6.5GPa ð�50%Þ was given by Salvetat et al. (1999) based on the
force–deflection measurements of SWNT bundles as suspended beams loaded by an
atomic force microscopy (AFM). Salvetat et al. have also given a rough model
estimate 19.5GPa. In a more recent work, with their heat capacity measurements,
Lasjaunias et al. (2003) estimated the shear modulus to be c44 ¼ 1:1–1.2 and 2.0GPa
for SWNT bundle samples produced by the arc discharge and laser vaporization
techniques, respectively. We have not found more measurements of c44 in the
literature, because the small dimensions of SWNT bundles have made it extremely
difficult to measure their mechanical properties directly. The above-mentioned
inconsistence between the model and experimental estimates has not been unresolved
yet. Hereinafter, we propose an atomic calculation model for the estimate of c44. As
illustrated in Fig. 9, an out-of-plane continuum shear strain of magnitude g
corresponds to an axial slide of distance d ¼

ffiffiffi
3

p
L0g=2, between two neighboring

rows of tubes, denoted by N1 and N2, where L0 is the lattice constant or the distance
between the centers of two adjacent tubes. We have not found a convenient method
to estimate c44 using the hybrid model presented in the previous sections, and we
hence now turn to a purely atomic model for the estimation. We estimate c44 by
calculating the change in the intertube van der Waals energy density U resulting from
the slide and evaluating its second derivative with respect to the shear strain g. We
assume that all the tubes within one SWNT bundle have the same chirality and
helical angle f0. The van der Waals interaction energy, uðd; y1; y2Þ, between two
adjacent tubes, T1 and T2 located, respectively, on tube rows N1 and N2, depends
upon their diameterD0, their common helical angle f0, the slide distance d or shear
strain g, and also upon their respective axial orientations y1 and y2 , as noted in
Fig. 9. We calculate uðd; y1; y2Þ by first computing, using the LJ potential, the
interaction energy between one atom on a section of tube T1 of length equating its
axial periodicity LP and all the atoms of tube T2, and then summing it over all the
atoms on this section of tube T1. Since each tube, T1, has four relatively sliding and
adjacent tubes, if all these four tubes have the same axial orientation y2, then the
changeable van der Waals interaction energy density is u=ðLPO0Þ and the
τ13

x1

x

x2

x3

τ13

2
3

2
3

(a) (b)

Fig. 9. A schematic illustration for the model used to estimate the out-of-plane shear modulus c44 ¼ c55.
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corresponding shear modulus is thus

cy1 ;y244 ¼
3L2

0

4O0LP

@2uðd; y1; y2Þ

@d2

����
d¼dmin

; ð8Þ

where d ¼ dmin corresponds to the minimum of uðd; y1; y2Þ with respect to d. Figs. 10a
and b show the topographies of c

y1;y2
44 for two SWNT bundles of the armchair-type

(6,6) and (12,12), having diameters 0.814 and 1.62 nm, respectively. In real cases,
orientations of SWNTs should correspond to a minimum of the total intertube van
der Waals energy, and may have a complicated dependence upon both the diameter
D0 and charity f0. Nevertheless, we have the following upper and lower bounds:

cmin44 ¼ min
y1;y2

cy1 ;y244 pc44pcmax44 ¼ max
y1;y2

cy1;y244 ð9Þ

for the out-of-plane shear modulus c44. In the above analysis, we have assumed
that the tubes are rigid, and we have estimated that the relative error resulted from
this assumption is generally less than 10%. The detailed analysis is given in
Appendix B.
Recent experimental observations (Thess et al., 1996; Terrones et al., 1997) show

that SWNTs, as long as about 0.1mm, are mostly armchair tubes, although there has
been an early report on the observation of chiral nanotubes (Iijima and Ichihashi,
1993). In Fig. 10c we plot these bounds for armchair SWNT bundeles of the (6,6),
(8,8), (10,10), (12,12), and (14,14) tubes. Interestingly, the upper and lower bounds
are almost independent of the diameter, with the values 
 2:2 and 0.25GPa,
respectively; and their average value, 1.22GPa, is consistent with the latest
experimental estimate c44 ¼ 1:1–1.2GPa by Lasjaunias et al. (2003) for SWNT
bundles produced by the arc discharge technique.
In summary, for typical SWNT bundles of tube diameter 1.4 nm, the predicted

elastic coefficients are c11 ¼ 40:68GPa, c12 ¼ 39:32GPa, c66 ¼ ðc11 � c12Þ=
2 ¼ 0:68GPa, c13 ¼ 12:40GPa; c33 ¼ 625:72GPa, and (in average) c44 ¼ 1:22GPa.
5. Concluding remarks

We have presented a hybrid atom/continuum (HAC) model to study the nonlinear
elastic properties of SWNTs bundles as bulk materials. The main findings or new
results are summarized below:
(1)
 The in-plane pressure–strain relations as shown in Fig. 2 for various tube
diameters are given for the first time. Each exhibits a sharp inflection point,
corresponding to the transition from perfectly circular to hexagonal tube cross-
sections, and strong nonlinearity. This implies that the linear elastic moduli,
resulting from linearization of these significantly nonlinear relations, are sensitive
to the choice of reference configurations, which may or may not be the unstressed
state, and that they are affected by tube diameters.
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(2)
4T

isotr
Fig. 2 also shows that the in-plane pressure–strain relations for tubes of different
diameters are of no significant difference prior to their respective inflection
points, and this implies that the in-plane bulk modulus (or the area modulus)
with respect to the unstressed configuration is nearly independent of tube
diameter.
(3)
 Our predicted critical transition diameter, 2.1 nm, in the unstressed state for
perfectly crystalline SWNT bundles is larger than 1.7 nm observed by López et al.
(2001) in their HRTEM study and smaller than 2.5 nm as predicted by Tersoff
and Ruoff (1994). We show, by an example, that imperfections in the lattice can
reduce this critical value significantly (to 1.8 nm).
(4)
 There have been a number of theoretical studies on the linear elastic properties of
SWNT bundles, but have none of these studies predicted or estimated a complete
set of five independent moduli. In this work, we have predicted the in-plane bulk
modulus, in-plane shear modulus, axial Young’s modulus, out-of-plane Poisson’s
ratio, and we have obtained upper and lower bounds of the out-of-plane shear
modulus. These predictions and estimates are compared well with limited
measurements available in the literature.
(5)
 As a comparison, we have examined the elastic coefficients of all the over two
hundreds hexagonal crystals listed in the handbook by Every and McCurdy
(1992). It is found that the elastic properties of graphite have the highest
anisotropy degree 4, 0.666, and the lowest modulus ratio, 0.39%, compared with
those of all other hexagonal crystals. Interestingly, we further find that the
predicted elastic properties of SWNT bundles have higher anisotropy degrees
and lower modulus ratios than those of graphite. For instance, for SWNT
bundles of tube diameter 1.4 nm, the anisotropy degree is 0.836, and the smallest
modulus ratio is 0.11%.
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Appendix A

We have noted that simulated pressure-strain curves for SWNT bundles of
different tube diameters shown in Fig. 2 nearly coincide prior to their respective
he anisotropy degree is defined as kC�Cisok=kCk, where C is the elastic stiffness tensor, Ciso is the

opic part of C, and k � k is the standard norm.
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inflection points, and this implies that the corresponding in-plane area modulus
exhibits negligible dependence upon the tube diameter. We consider this observation
particularly interesting, noting that the atom density of SWNT bundles is
proportional to D0=ðD0 þ s0Þ

2 and thus decreases rapidly with the increasing tube
diameter D0 because the intertubular spacing s0 for D0 ranging from 1 to 2 nm is
known to vary slightly around 3.2 nm. With this curiousness, we estimate in the
following the area modulus of a SWNT bundle by modeling it as a fiber-reinforced
composite material for which the mechanical properties of the effective matrix and
the effective solid reinforcement fibers are characterized, respectively, by the
intertube van der Waals interactions and the response of the constitutive SWNTs.
For simplicity, we neglect the dependence of the in-plane area modulus of the
effective matrix upon the tube diameter, considering the fact that the intertubular
spacing, which is the dominating parameter in the van der Waals interaction, is
known to vary very little. Thus, the diameter-dependence of the in-plane
pressure–strain response properties of the composite is determined by
the corresponding dependence of the in-plane effective bulk modulus Ki of the
effective fibers and their volume fraction b in the composite. A simple analysis leads
to the representation K i ¼ Eswnttswnt=D0. The volume fraction of the reinforcing
component is given as below

b ¼
pD2

0=8ffiffiffi
3

p
ðD0 þ s0Þ

2=4
¼

p

2
ffiffiffi
3

p
ð1þ s0=D0Þ

2
: ð10Þ

It is known from micromechanics that the stiffness of a fiber-reinforced composite
increases with increasing fiber stiffness and with increasing fibre-volume fraction,
provided that the fiber is stiffer than the matrix. Because of the much stronger
carbon–carbon bond than that of the van der Waals interaction, the in-plane
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effective bulk modulus K i for diameter D0 smaller than 2.0 nm is larger than that of
the effective matrix. Thus, an increase in the tube diameter would soften the
composite through a resulting decrease in the in-plane bulk modulus K i but stiffen
the composite through the increased volume fraction b. It is therefore not
unreasonable that the in-plane pressure–strain response of the composite happens
to be nearly independent of the tube diameter. Physically, the tube in-plane stiffness
affects the in-plane stiffness of the SWNT bundle through deformations in tube
sections. To illustrate this effect, we plot in Fig. 11 the pressure–strain curves for
SWNT bundles for both cases when section deformations are allowed and
disallowed, and it is seen that the section deformation, and hence the tube in-plane
stiffness, has a significant effect on the in-plane modulus of SWNT bundles.
Appendix B

We consider the effect of cross-section wrapping of tubes upon our estimate of the
off-plane shear modulus c44. In response to an applied out-of-plane shear stress t23,
the intertube van der Waals interaction results in axial forces, whose distribution on
a tube surface is antisymmetric with respect to the middle plane of the tube, parallel
to the 1–3 plane, as illustrated in Fig. 12a, and we denote by f vdw the measure of
these forces per unit area on tube surfaces. Because of periodicity of the hexagonal
crystalline tube arrangement, the resultant forces per unit axial length on the upper
and lower semi-surfaces of each tube have equal magnitude t23L0 but opposite
directions, where L0 is the lattice constant as noted in the main text. As illustrated in
Fig. 12b for the cross-section, these distributed forces are balanced by the in-shell
shear stress tðjÞ. The corresponding in-shell shear strain is gswnt ¼ tðjÞ=Gswnt, and
for an infinitesimal circumferential segment R0dj, the corresponding infinitesimal
wrapping axial distance is gswntR0dj, where Gswnt ¼ Eswnt=½2ð1þ nswntÞ� ¼ 231GPa,
is the shear modulus of SWNTs as shear. Thus, the total wrapping distance for the
entire tube section is given as the following:

dw ¼

Z p=2

�p=2

tðjÞ
Gswnt

R0 dj ð11Þ
x2

x3

x1 

fvdw fvdw

ϕ

τ(ϕ)

(a) (b)

Fig. 12. A schematic illustration for the model used to account the wrapping effect.
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Noting that tðjÞ vanishes at j ¼ �p=2 and reaches the extreme values at j ¼ 0;p
with the magnitude tmax ¼ t23L0=ð2tswntÞ, we approximate the shear stress
distribution by tðjÞ ¼ tmax cosj and thus have

dw ¼
2R0tmax

Gswnt
¼

R0L0

Gswnt
tswnt t23: ð12Þ

On the other hand, by omitting the tube wrapping the intertube sliding d can be
associated with the applied shear stress t23 in the form d ¼

ffiffiffi
3

p
t23L0=ð2c44Þ, where

c44 ð0:25pc44p2:2GPaÞ is the out-of-plane shear modulus estimated in Section 4 by
omitting the wrapping effect. Therefore, in the presence of both intertube sliding d
and intratube wrapping dw, the bulk shear strain is given by g ¼ 2ðdþ dwÞ=ð

ffiffiffi
3

p
L0Þ

and the shear modulus is defined as c�44 ¼ t44=g. These analyses yield the following
relation:

c�44
c44

¼
d

d þ dw
¼ 1þ

D0c44ffiffiffi
3

p
Gswnttswnt

� ��1

: ð13Þ

Finally, substituting the values of Gswnt; tswnt, c44 ¼ 0:25–2.2GPa, and D0 ¼ 1–2 nm,
we obtain 0:86pc�44=c44p0:99.
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