Search

Stony Brook University, New York | Page Not Found

Page Not Found

Hmmm... We can't find that page. Perhaps the link was spelled incorrectly, or the page you're looking for does not exist.

Try going back, or you can search stonybrook.edu.

Search

Stony Brook University, New York | Page Not Found

Page Not Found

Hmmm... We can't find that page. Perhaps the link was spelled incorrectly, or the page you're looking for does not exist.

Try going back, or you can search stonybrook.edu.

Search

REU in Computer Science - Summer Research position available for summer 2017

Application Deadline:
March 31, 2017

Dates: 
May 30 - August 4, 2017

Description of REU-Computer Science project: Large-scale Web services often employ distributed memory caching solutions to reduce client response latencies by lowering loads at the critical backend database tier. Such in-memory caching solutions are also offered as a service by several cloud service providers, including Amazon Web Services and Google Cloud Platform. A popular example of such a caching solution is Memcached, that is currently employed by many online service providers, including Facebook, Reddit, Twitter, Wikipedia, YouTube, and Zynga. The memory caching tier sits in between the client and the backend database or storage tier, and aggregates the available memory of all nodes in the caching tier to cache data. Requests from clients are first looked up at the faster (memory access) caching tier. If the lookup fails in the caching tier, it is then tried at the slower (disk access), persistent database tier.
However, distributed caching systems, such as Memcache, are not elastic due to their stateful nature. There are many challenges in dynamically scaling the caching tier. The primary challenge is that the scaling action will result in an immediate, albeit transient, performance degradation. Addition of a new cache node results in a cold cache, whereas removal of an existing cache node results in loss of hot data. In both cases, performance suffers by as much as a factor of 10 due to cache misses — until the cache is warm again (which can take many minutes, significantly costing businesses in lost revenues). To avoid such performance issues, system administrators typically over-provision caching systems, leading to significant cost/energy waste given the large amounts of expensive DRAM deployed. 
This project aims to investigate novel architectures for memory caching systems that will enable dynamic scaling without any performance degradation. Our research will enable significant cost and energy savings, and will also scale to Internet-sized systems such as Facebook and Amazon. 


The REU participant will conclude the program by presenting a poster at a campus summer undergraduate research symposium event.

For more information regarding Dr. Anshul Gandhi (REU mentor/PI), please see: https://www3.cs.stonybrook.edu/~anshul/

Award: 
The REU participant would receive a stipend of $7,300. Students may opt to live on-campus during the REU program duration/(10 weeks)  but will be responsible for paying their housing bill directly and/or allocating a portion of their stipend for payment.

Eligibility: 
This program is open to current Stony Brook juniors majoring in Computer Science. The ideal applicant will have some hands-on computer systems experience plus coding skills. A strong background in Math is preferred.

Application: 
The application packet consists of the following: 

  • a letter of interest addressed to Dr. Anshul Gandhi: anshul (at) cs (dot) stonybrook (dot) edu / anshul@cs.stonybrook.edu
  • a resume or CV
  • a transcript (unofficial)
  • name/contact information for a faculty reference who can comment on the student's research capabilities and potential to carry out the specified project



Login to Edit