Initial experiences with the Ookami A64FX testbed

Andrew Burford1, Alan C. Calder1, David Carlson1, Barbara Chapman1, Firat Coşkun1, Tony Curtis1, Catherine Feldman1, Robert J. Harrison1, Yan Kang1, Benjamin Michalowicz1, Eric Raut1, Eva Siegmann1, Daniel G. Wood1, Robert L. Deleon2, Mathew Jones2, Nikolay A. Simakov2, Joseph P. White2, Dossay Oryspayev3

1Institute for Advanced Computational Science, USA
2Center for Computational Research, USA
3Brookhaven National Laboratory, USA
Ookami - 狼

• Ookami is Japanese for wolf

• A computer technology testbed supported by NSF

• Available for researchers worldwide

 (excluding ITAR prohibited countries & restricted parties on the EAR entity list)

• Usage is free for non-commercial and limited commercial purposes
What is Ookami

- 174 1.8Ghz A64FX compute nodes each with 32GB of high-bandwidth memory and a 512 GB SSD
 - Same as in currently fastest machine worldwide, Fugaku
 - First deployment outside Japan
 - HPE/Cray Apollo 80

- Ookami also includes:
 - 1 node with dual socket AMD Rome (128 cores) with 512 Gbyte memory
 - 2 nodes with dual socket Thunder X2 (64 cores) each with 256 Gbyte memory and 2 NVIDIA V100 GPU
 - Intel Sky Lake Processors (32 cores) with 192 Gbyte memory

- Delivers ~ 1.5M node hours per year
Fugaku #1
Fastest computer in the world

First machine to be fastest in all 5 major benchmarks:

- Green-500
- Top-500 – 415 PFLOP/s in double precision – nearly 3x Summit!
- HPCG
- HPL-AI
- Graph-500

https://www.r-ccs.riken.jp/en/fugaku
A64fx at a Glance

- ARM V8 64-bit
- 512-bit SVE
- 48 compute cores
- 4 NUMA regions
- 32 (4x8) GB HBM @ 1 TB/s
- PCIe 3 (+ Tofu-3) network
A64fx NUMA Node Architecture

- Supports high calculation performance and low power consumption
- Supports Scalable Vector Extensions (SVE)
- **4 Core Memory Groups (CMGs)**
 - 12 cores (13 in the FX1000)
 - 64KB L1$ per core
 - 256b cache line
 - 8MB L2$ shared between all cores
 - 256b cache line
 - Zero L3$
 - 8 GB HBM at 256GB/s

Diagram is the „1000“ chip. We have „700“ chip, i.e. no assistant cores and no Tofu interface
SVE
(Scalable Vector Extensions)

• Enables Vector Length Agnostic (VLA) programming
 • VLA enables portability, scalability, and optimization
 • The actual vector length is set by the CPU architect
 • Any multiple of 128 bits up to 2048 bits
 • May be dynamically reduced by the OS or hypervisor
 • Predicate-centric architecture
 • SVE was designed for HPC and can vectorize complex structures
 • Gather-load and scatter-store; horizontal reductions
 • SVE begins to tackle traditional barriers to auto-vectorization
 • Support from open source and commercial tools
2017 analysis of XSEDE workload revealed 86% of all jobs need less than 32 GB / node

These 86% of jobs correspond to 85% of the total XSEDE cpu-hour usage

“Programmability of a CPU, performance of a GPU”
Satoshi Matsuoka (Head of RIKEN, home of Fugaku)

- Blazing fast memory
- Easily accessed performance
- New technology path to exascale
What else

- CentOS 8 operating system
- DUO Authentication
- High-performance Lustre file system (~800TB of storage)
- Slurm workload manager
- Compilers: GNU, Arm, Cray, Nvidia, Fujitsu (soon)
- Continuous growing stack of preinstalled software
 - MPI implementations
 - Toolchains
 - Math libraries
 - Performance analysis & debugging: (arm Forge, Cray, GNU, TAU, ..)
Initial Experiences

- Most applications run out of the box
- Obtaining high performance is more complex
Minimod

- seismic modeling mini-app developed by Total
- extracts the stencil computation from a production seismic imaging application
- stencil is used to numerically solve the acoustic wave equation
- benchmark to test new and emerging hardware and programming models for geophysics applications
SWIM

- Part of the SPEC CPU2000 Benchmark suite
- weather forecasting benchmark (FORTRAN OpenMP)
- solves the shallow-water equations using finite differences
• Ookami is monitored with XDMoD
• XDMoD software modify to monitor A64FX-specific metrics
• application kernels are used to proactively monitor HPC resource performance by daily benchmarks
• goal is to see how the performance of benchmarks and real applications change as the compiler toolchains improve
Getting Accounts

• Submit a project request (templates on our website)
 • **Testbed:**
 • Porting and tuning software
 • Benchmarking
 • Limited production calculations to demonstrate capability
 • Significantly less than 15,000 node hours per year
 • First two project years

 • **Production:**
 • Less than 150K node hours per year
 • Lower priority during the first two project years

• **Requests must include:**
 Title, date, PI, usage description, computational resources, grant number (if funded)
Getting Accounts

• Getting access:
 • Create a project request and submit it through ticketing system:
 https://iacs.supportsystem.com/
 • Requests will be reviewed & published
 • If you are not affiliated to SBU: Fill a volunteer demographic form

https://www.stonybrook.edu/ookami/
Current Status

• ~ 30 testbed projects (USA & Europe)

• ~ 100 users

• Several trainings & webinars

• Talks about Ookami in this session:
 • Lessons Learned: An In-depth Look at Running FLASH on Ookami
 Alan C. Calder, Catherine Feldman, and Benjamin Michalowicz
 • Performance Engineering using SVE
 Robert J. Harrison
Get in Contact

• https://www.stonybrook.edu/ookami/

• Bi-weekly Hackathon
 • Tue 10am – noon EST
 • Thu 2pm – 4pm EST

• Slack Channel for users #OOKAMI

Acknowledgement:

• The whole Ookami team

• NSF (grant grant OAC 1927880)