OOKAMI PROJECT
APPLICATION

Date: 15 April 2021

Project Title: Porting and Evaluating the Performance Engineering Tools OSACA and LIKWID on OOKAMI

Usage:
• Testbed

Principal Investigator:
• University/Company/Institute: Erlangen National High Performance Computing Center (NHR@FAU)
• Mailing address including country: Martensstrasse 1, 91058 Erlangen, Germany
• Phone number: +4991318528973
• Email: georg.hager@fau.de

Names & Email of initial project users:
• Prof. Gerhard Wellein: gerhard.wellein@fau.de
• Dr. Georg Hager: georg.hager@fau.de
• Christie Alappat: christie.alappat@fau.de
• Jan Laukemann: jan.laukemann@fau.de
• Thomas Gruber: thomas.gruber@fau.de
• Julian Hammer: julian.hammer@fau.de

Usage Description:
In this project, we want to install and test the tools we developed at NHR@FAU on the OOKAMI cluster. All tools were ported to A64FX and are tested on other A64FX based systems. These tools are:
• LIKWID: Tool suite for performance engineering that provides system topology, control of process and thread affinity, micro-benchmarking and access to hardware performance events. The LIKWID suite is developed publicly as an open-source project on Github and available for download at https://ftp.uni-erlangen.de/pub/likwid/. LIKWID is installed on many HPC systems worldwide to help users analyze and optimize their codes.

• OSACA: Tool for static in-core runtime prediction. It allows automatic parsing and runtime prediction of assembly code, including throughput analysis and detection of the critical path and loop-carried dependencies. OSACA is developed publicly as an open-source project on Github at https://github.com/RRZE-HPC/OSACA/. It is also available as a package on PyPI (https://pypi.org/project/osaca/).

Our group conducted and published extensive research on an FX700 system [1] and the Fugaku supercomputer [2]. We were invited by Eva Siegmann (eva.siegmann@stonybrook.edu) to introduce our tools and provide our insights into performance modeling and engineering in hackathons for the user group of OOKAMI.

Computational Resources:

• Total node hours per year: 15,000

• Size (nodes) and duration (hours) for a typical batch job: single-node to a few nodes for up to 12 hours

• Disk space (home, project, scratch): 200 GByte in total

Personnel Resources:

Required software:

• Python 3.x

• C/C++/Fortran compilers suitable for A64FX

• make, perl and some other basic Linux tools

If your research is supported by US federal agencies:

• Agency: N/A

• Grant number(s): N/A
Production projects:

References
