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SVE

● Vector-Length-Agnostic Extension For Arm Processors
○ Supports variety of vector lengths
○ From 128 bits to 2048 bits

● Powerful Vector Predication support
○ Previous vector extensions (e.g NEON, AVX) have simple predication
○  Supports Per Vector Predication

● Special vector manipulation Instructions
○ Used for moving data between vectors
○ Very fast!



Loop Vectorization Challenges



If Conversion

For ( int i = 0 ; i < n ; ++i ) {

if( cond[i]) {

A[i] = B[i] * C[i];

}else{

A[i] = B[i] + C[i];

}

}

For ( int i = 0 ; i < n ; i+=4 ) {

mask = cond[i:i+4]

store_p( mask, &A[i], B[i:i+4] * C[i:i+4] );

store_p( !mask, &A[i], B[i:i+4] + C[i:i+4] );

}



What is the Problem?

For ( int i = 0 ; i < n ; i+=4 ) {

mask = cond[i:i+4]

store_p( mask, &A[i], B[i:i+4] * C[i:i+4] );

store_p( !mask, &A[i], B[i:i+4] + C[i:i+4] );

}

Only one of them will be committed!!

The other one is wasted!!
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Active Lane Consolidation (ALC)



Permutation: Gathering True elements
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How does it perform?



Experimental Setup

Machine:

● Fujitsu’s  A64FX 4 nodes x 12 threads (48 threads) – 32GB RAM
● VL = 512-bits

Compiler: Arm’s Clang



Test Kernel
for (int i = 0; i < n; ++i) {

    if (cond[i]) {

    } else {

    }
}



Test Kernel
for (int i = 0; i < n; ++i) {

    if (cond[i]) {

        a[i] = (2 * a[i] - 2 * c[i]) + (b[i] - 2 * a[i]);

        a[i] += 2 * i + i * b[i];
        b[i] = 2 - 2 * b[i] + (2 * a[i] - 2 * c[i]);
        b[i] -= 3 * i + i * c[i];
        c[i] += 2 * b[i] + 2 * a[i] - 3 * (2 * c[i] - 2 * b[i] + i * i);
    } else {

        a[i] *= 2 + b[i] - 3 * c[i];

        c[i] = a[i] * b[i] - 1 + c[i];
        b[i] = 3 * a[i] - 2 * c[i];
        b[i] -= 2 * c[i] + 7 + a[i] ;
        a[i] -= 4 + b[i] * 2;
        c[i] += 5 * a[i] + 2 * b[i];
    }
}



Speedup Over Scalar Code

● 1.88X faster than scalar

● Still slower than Armclang 
vectorization!!

But What’s Wrong with ALC?



ALC Bottleneck

● Permutation overhead?
○ SVE vector manipulation instructions are so fast

○ Takes less than 5% of execution time

● Measure more metrics

~10X more stalls due to memory!!!
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For ( int i = 0 ; i < n ; ++i ) {

if( cond[i]) {

A[i] = B[i] * C[i];

}else{

A[i] = B[i] + C[i];

}

}

0 5 9 13

Uniform vector to execute else block

● Need to load following indices of 
array B and C

● Gather load instruction are used

None Consecutive memory addresses

Causing High Latency!!



Solution?

● Need to eliminate gather 

instructions.
● Want to do regular vector loads 

from consecutive memory 
addresses

Data Permutation

● Load all indices of the array
● Permute them in each iteration



Memory Stalls

● Reduced stalls by 40%

● Still much more than armclang

● Scatter stores should also be 

eliminated



Speedup over scalar code Number of Instructions executed



● Executing 69% more Instructions
● Still ~9% more speedup over previous version
● More improvement by eliminating Scatter Store

Gather/Scatter Instructions are BAD!!!



Thank You


