
Active Lane Consolidation

Rouzbeh Paktinatkeleshteri, M.Sc.
João P. L. de Carvalho, PhD
José Nelson Amaral, PhD

SVE

● Vector-Length-Agnostic Extension For Arm Processors
○ Supports variety of vector lengths
○ From 128 bits to 2048 bits

● Powerful Vector Predication support
○ Previous vector extensions (e.g NEON, AVX) have simple predication
○ Supports Per Vector Predication

● Special vector manipulation Instructions
○ Used for moving data between vectors
○ Very fast!

Loop Vectorization Challenges

If Conversion

For (int i = 0 ; i < n ; ++i) {

if(cond[i]) {

A[i] = B[i] * C[i];

}else{

A[i] = B[i] + C[i];

}

}

For (int i = 0 ; i < n ; i+=4) {

mask = cond[i:i+4]

store_p(mask, &A[i], B[i:i+4] * C[i:i+4]);

store_p(!mask, &A[i], B[i:i+4] + C[i:i+4]);

}

What is the Problem?

For (int i = 0 ; i < n ; i+=4) {

mask = cond[i:i+4]

store_p(mask, &A[i], B[i:i+4] * C[i:i+4]);

store_p(!mask, &A[i], B[i:i+4] + C[i:i+4]);

}

Only one of them will be committed!!

The other one is wasted!!

Mask vector

Then block
instructions

Else block
instructions

Mask vector

Then block
instructions

Else block
instructions

Mask vector

Then block
instructions

Else block
instructions

Mask vector

Then block
instructions

Else block
instructions

Mask vector

Then block
instructions

Else block
instructions

Active Lane Consolidation (ALC)

Permutation: Gathering True elements

1 2 3 4 5 6 7 8

5 2 3 6 1 4 7 8

Vector of Indices

Mask Vector

Do
Permutation

 Loop Iteration

 Initialization

Do
Permutation

Uniform
True?

Execute
Then Block

 Loop Iteration

 Initialization

 YesNo

Execute Else
Block

Do
Permutation

Uniform
True?

Execute
Then Block

 Loop Iteration

 Initialization

 YesNo

Execute Else
Block

Update Vector
for Next Iteration

permutation

Do
Permutation

Uniform
True?

Execute
Then Block

 Loop Iteration

 Initialization

 YesNo

Execute Else
Block

Update Vector
for Next Iteration

permutation

 Vector for

Next Iteration

Permutation

How does it perform?

Experimental Setup

Machine:

● Fujitsu’s A64FX 4 nodes x 12 threads (48 threads) – 32GB RAM
● VL = 512-bits

Compiler: Arm’s Clang

Test Kernel
for (int i = 0; i < n; ++i) {

 if (cond[i]) {

 } else {

 }
}

Test Kernel
for (int i = 0; i < n; ++i) {

 if (cond[i]) {

 a[i] = (2 * a[i] - 2 * c[i]) + (b[i] - 2 * a[i]);

 a[i] += 2 * i + i * b[i];
 b[i] = 2 - 2 * b[i] + (2 * a[i] - 2 * c[i]);
 b[i] -= 3 * i + i * c[i];
 c[i] += 2 * b[i] + 2 * a[i] - 3 * (2 * c[i] - 2 * b[i] + i * i);
 } else {

 a[i] *= 2 + b[i] - 3 * c[i];

 c[i] = a[i] * b[i] - 1 + c[i];
 b[i] = 3 * a[i] - 2 * c[i];
 b[i] -= 2 * c[i] + 7 + a[i] ;
 a[i] -= 4 + b[i] * 2;
 c[i] += 5 * a[i] + 2 * b[i];
 }
}

Speedup Over Scalar Code

● 1.88X faster than scalar

● Still slower than Armclang
vectorization!!

But What’s Wrong with ALC?

ALC Bottleneck

● Permutation overhead?
○ SVE vector manipulation instructions are so fast

○ Takes less than 5% of execution time

● Measure more metrics

~10X more stalls due to memory!!!

Why Memory Stalls?

Uniform
True?

Execute
Then Block

 YesNo

Execute Else
Block

● Problem happens in uniform

blocks

Why Memory Stalls?

Uniform
True?

Execute
Then Block

 Yes

● Problem happens in uniform

blocks

Execute Else
Block

No

For (int i = 0 ; i < n ; ++i) {

if(cond[i]) {

A[i] = B[i] * C[i];

}else{

A[i] = B[i] + C[i];

}

}

0 5 9 13

Uniform vector to execute else block

● Need to load following indices of
array B and C

● Gather load instruction are used

None Consecutive memory addresses

Causing High Latency!!

Solution?

● Need to eliminate gather

instructions.
● Want to do regular vector loads

from consecutive memory
addresses

Data Permutation

● Load all indices of the array
● Permute them in each iteration

Memory Stalls

● Reduced stalls by 40%

● Still much more than armclang

● Scatter stores should also be

eliminated

Speedup over scalar code Number of Instructions executed

● Executing 69% more Instructions
● Still ~9% more speedup over previous version
● More improvement by eliminating Scatter Store

Gather/Scatter Instructions are BAD!!!

Thank You

