


# The Modular Ocean Model (MOM6)

Youwei Ma Stony Brook University 03/23/2023

#### **Tropical cyclone (TC) and climate interaction**





## The Modular Ocean Model (MOM6)



- MOM6 is a numerical model simulating fluid properties and circulations based on the Navier–Stokes equations on the rotating sphere with thermodynamic terms.
- MOM6 is the ocean component in Community Earth System Model (CESM).
- Fortran based model.

7 equations and 7 unknowns:

3 velocity components; Potential temperature; Salinity; Density;

Pressure.

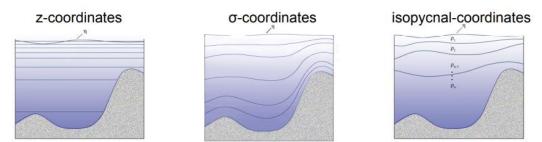
Plus: 1 equation for each passive tracer, e.g. CFCs, Ideal Age.

#### Features of MOM6



#### Arakawa C-grid

Fig 1: Arakawa C-grid of variables around an h-cell with North-East indexing convention  $\begin{array}{c|c} q_{i-1,j} & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$ 


Advantages:

- Allow single-point channels
- Good for conservation

Disadvantages:

 Less accurate Coriolis term, inducing less accurate inertia gravity waves and Rossby waves

#### Vertical Lagrangian remapping: Arbitrary Lagrangian Eulerian (ALE) algorithm



From: https://www.oc.nps.edu/nom/modeling/vertical\_grids.html

- · Enable the use of any vertical coordinate
- Removes the vertical advection CFL restriction on the time-step so that the model is unconditionally stable to thin (or even vanishing) layers.
- Good for representing the evolution of ice shelf grounding lines as well as coastal/tidal estuaries



| Compiler+parallel implementation                       | Flags                                                                           |
|--------------------------------------------------------|---------------------------------------------------------------------------------|
| GCC v12.1.0+Open MPI v4.1.4                            | -Ofast, -mcpu=a64fx,-fopenmp, -fallow-invalid-boz,-fallow-<br>argument-mismatch |
| Arm v22.1+Open MPI v4.1.4                              | -Ofast, -mcpu=a64fx -armpl, -fopenmp,<br>FPPFLAGS += -D'rank(X)=size(shape(X))  |
| Cray v22.03+MVAPICH2 v2.3.5                            | -O3, -h vector3,-h omp                                                          |
| Fujitsu v4.8                                           | -Kfast, -KSVE,-Kopenmp, -CcdRR8                                                 |
| Intel 2022.1 (Intel Broadwell) processors on Cheyenne) | -O3,-openmp                                                                     |

Reference makefile templates:

MOM6-examples/src/mkmf/templates/linux-GNU.mk MOM6-examples/src/mkmf/templates/ncrc-cray.mk

#### MOM6 test case

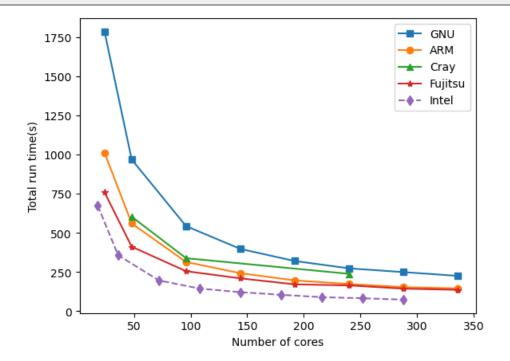


MOM6 configuration for tests:

dev/gfdl MOM6-examples/ocean\_only/global

• 1-degree global ocean

Number of grids =360(longitude)x210(latitude)x63(depth) =4,762,800


Depth 0.5m-6000m

• 30-model-day run

- Surface oundary conditions: prescribes the daily surface forcing including radiation flux, freshwater flux, and wind stress
- Bottom boundary conditions: realistic global bathymetry
- Initial conditions: realistic temperature and salinity.

#### Performance of pure-MPI tasks





The total run time of 30-day simulations of MOM6 compiled by GCC, Arm, Cray, Fujitsu on Ookami, and Intel on Cheyenne.

Single node:

The Fujitsu compiler outperforms other compilers on Ookami The Fujitsu compiler is two times faster than the GCC compiler

Multi-core performance: Saturate after decrease The Fujitsu compiler is the fastest

Cray simulations are aborted due to a Segmentation fault.

Intel model running on Cheyenne has a better performance than all the compilers on Ookami

#### Throughput



Throughput of model compiled by different compilers on 6 nodes

|         | Core hour/simulated year | Simulated year/wall clock day |
|---------|--------------------------|-------------------------------|
| GCC     | 239.0                    | 28.9                          |
| ARM     | 146.9                    | 47.0                          |
| Fujitsu | 137.8                    | 50.1                          |

Power consumption ~117W per node

# Mapping the MPI ranks by the NUMA regions



| Number of tasks per NUMA | Total run time (seconds) |
|--------------------------|--------------------------|
| 8                        | 154.8(170.7)             |
| 9                        | 147.4                    |
| 10                       | 143.5(164.2)             |
| 11                       | 129.0                    |
| 12                       | 143.5                    |

Total run time of Fujitsu-built MOM6 with respect to the number of tasks per NUMA running on 6 nodes. The numbers in parentheses indicate the run time using the same number of tasks but fully loaded NUMA in fewer nodes.

### Fujitsu Profiling Tool



|                                      | 12-task-per-NUMA case | 11-task-per-NUMA case |  |
|--------------------------------------|-----------------------|-----------------------|--|
| The memory throughput peak ratio     | 38.2%                 | 41.4%                 |  |
| The SVE operation rates              | ~85%                  |                       |  |
| mca_btl_vader_component<br>_progress | 29.5%                 | 26.6%                 |  |
| MPI communication                    | 36.3%                 | 26.6%                 |  |

### MPI+OpenMP hybrid run



- 12 threads per NUMA, 4 MPI-tasks per node
- The OpenMP enabled MOM6 is successfully compiled by Arm, GCC, Fujitsu, and Intel compilers but fails to run
- Find an initialization bug in the source code

### Summary and future work



- Fujitsu compiler is the fastest one on the Ookami.
- The throughput of Fujitsu-compiled MOM6 can satisfy our research requirements.
- 11 tasks per NUMA is the optimized setting for the future production run.
- MPI+OpenMP hybrid run will be tested in the future.
- Porting the fully coupled CESM on Ookami.



# Thanks