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1 LAB 1: DETERMINATION OF YOUNG’S MODULUS AND 

POISSON’S RATIO 

 

1.1 Objectives 

1. Familiarization with the transducers used in strain and displacement measurements. 

2. Perform a tensile test to understand the operation of the strain indicator and balance unit, 

and the strain measurement technique. 

3. Determination of material properties and observation of material response at different 

stages of loading. 

4. Familiarization with strain gage and digital strain indicator, and their use for strain 

measurement. 

5. Familiarization with the operation of Tinius Olsen 1000 Universal Digital Testing 

Machine. 

6. Familiarization with using LVDT system for displacement measurement. 

 

1.2 Equipment 

● P3 Digital Strain Indicator. 

● Computer with P3 software. 

● Tinius Olsen 1000 Universal Digital Testing Machine. 

● LVDT and displacement display unit. 

● Aluminum and steel tensile specimen with four strain gages already mounted. 

● Aluminum tensile specimen for destructive testing. 

 

1.3 Background Information 

1.3.1 Stress and Strain 

Consider a bar subjected to the axial load T. Under no-load conditions the length of the bar is L 

and the diameter is D. The cross-sectional area of the bar is designated by A. If the load is applied 

such that the stress does not exceed the elastic limit of the material, the axial strain is given by  

 

   𝜖𝑎 =
(

𝑇
𝐴)

𝐸
 =

𝜎𝑎

𝐸
 

(1.1) 

 

where σa is the axial stress and E is Young’s modulus for the material. The unit axial strain, εa, 

defined by the following relation: 

 𝜖𝑎 =
𝛿𝐿

𝐿
. (1.2) 
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1.3.2 Strain Gauge and Strain Indicator 

1.3.2.1 Strain Gauges 

 
Figure 1.1: Strain Gage 

 

Among all experimental methods for the measurement of small strains, the strain gauge method is 

one of the most accurate and popular.  It is a point by point measurement technique.  A strain gauge 

is made of a fine metal wire fixed on a base as shown in Figure. 1.1.  The resistance R of the wire 

is calculated by 

 

 𝑅 =
𝜌𝑙

𝑆
 (1.3) 

 

where l is the wire length, S is the wire cross-sectional area, and ρ is the specific resistance, which 

is a material constant. A strain gauge is, therefore, a resistor. Its resistance depends on the length,  

cross-sectional area, and the material of the fine metal wire in the gauge. When a strain gauge is 

mounted on the surface of a specimen and the specimen is extended by a tensile force, the strain 

gauge will be extended too. A change of the resistance of the gauge will be caused by the change 

of the length of the fine metal wire fixed on the base of the gauge. The relationship between them 

is 

 

 
𝛥𝑅

𝑅
= 𝐾

𝛥𝐿

𝐿
 (1.4) 

 

where L is the gauge length, R is the resistance of the gauge, ΔL is the extension of the gauge, and 

K is the gauge factor, which is supplied by the manufacturer. A substitution of ΔL/L = ε allows for 

a relationship of resistance of the gauge and the strain to be produced, as follows: 

 

 
𝛥𝑅

𝑅
= 𝐾𝜖 (1.5) 
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1.3.2.2 Wheatstone Bridge 

 
Figure 1.2: Wheatstone Bridge 

 

The change of the resistance of a resistor can be easily measured by a Wheatstone bridge as shown 

in Figure. 1.2.  We know that the bridge balance condition (ΔU = 0) is 

 

 
𝑅1

𝑅2
=

𝑅3

𝑅4
 (1.6) 

 

U is the excitation voltage.  If R1 = R2 = R3 = R4 then ΔU = 0. Now R1 is a strain gauge that is 

already mounted on a specimen.  Its resistance is R. Before the specimen has any deformation, the 

potential between S+ and P- is 

 

 Δ𝑈(𝑆+𝑃−) =
(𝑅1𝑈)

𝑅1 + 𝑅2
=

𝑈

2
, (1.7) 

 

and the potential between S- and P- is 

 

 Δ𝑈(𝑆−𝑃−) =
(𝑅3𝑈)

𝑅3 + 𝑅4
=

𝑈

2
. (1.8) 

 

When the specimen is loaded the resistance of the strain gage will be changed.  The potential 

between S+ and P- is 
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 Δ𝑈′(𝑆+𝑃−) =
[(𝑅1 + 𝛥𝑅1)𝑈]

𝑅1 + 𝛥𝑅1 + 𝑅2
 (1.9) 

 

The change of the potential is the output of the Wheatstone bridge 

 

 Δ𝑈′(𝑆+𝑆−) =
[(𝑅1 + 𝛥𝑅1)𝑈]

𝑅1 + 𝛥𝑅1 + 𝑅2
−

𝑅3𝑈

𝑅3 + 𝑅4
  (1.10) 

 

Because 𝑅1 = 𝑅2 = 𝑅3 = 𝑅4then 

 

 𝛥𝑈(𝑆+𝑆−) =
𝛥𝑅1𝑈

4𝑅 + 2𝛥𝑅
=

𝐾𝜖𝑈

4 + 2𝐾𝜖
 (1.11) 

 

The gauge factor K is usually around 2 and the strain within the elasticity range is very small.  The 

second term of the denominator compared with the first term can be neglected. Therefore, 

 

 𝛥𝑈(𝑆+𝑆−) =
𝐾𝜖𝑈

4
 (1.12) 

 

Since both K and U are known, the relationship between the bridge output and the strain is as 

follows: 

 

 𝛥𝑈 = 𝐶𝜖  (1.13) 

 

where C is a constant that depends on the gauge factor and excitation voltage of the bridge. Thus, 

a physical measurement of ε is transformed into an electrical measurement by the Wheatstone 

Bridge. If R1, R2, R3, and R4 all are strain gauges, the strain of these gages are ε1, ε2, ε3, and ε4 

respectively, the total output of the Wheatstone Bridge will be 

 

  𝛥𝑈(𝑆+𝑆−) =
[𝐾(𝜖1 − 𝜖2 − 𝜖3 + 𝜖4)𝑈]

4
 (1.14) 

 

1.3.2.3 Strain Indicators 

The output of the Wheatstone bridge is 

 

𝛥𝑈(𝑆+𝑆−) =
𝐾𝜖𝑈

4
 (1.15) 
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If R1 is a strain gauge, the excitation voltage U cannot be too high, because of the higher the 

excitation voltage, the higher the gauge current.  This will cause a higher temperature effect (i.e., 

the strain-gage wire will heat up and its resistance will change) and ΔU will drift.  K is always 

around 2 and ε is very small. Therefore, ΔU will be a small fraction of U. For instance, if K = 2, 

U = 6V, and ε = 333 microstrain, then ΔU will be only about 4 mV.  For higher measurement 

sensitivity, a DC amplifier is necessary. A digital strain indicator is shown in Figure. 1.3. The left 

part is a Wheatstone bridge. The output from the bridge is connected to a DC amplifier. The output 

from the DC amplifier, the amplified output of the Wheatstone bridge, is connected to the digital 

display unit. An analog output also can be picked up from the output. The Amp. zero adjustment 

can be used to adjust the DC amplifier output to zero when the input is zero.  The balance control 

of the bridge is a variable potentiometer across P+ and P-. Terminal b connects to S+.  R1 is a strain 

gauge. If the resistance of R1 has some difference with R (R2 = R3  = R4 = R) adjust b until 

 

 r1
′ =  

r1R1

 r1 + R1
, r2

′ =  
r2R2

 r2 + R2
, and      

r1
′

r1
 =

R3

R4
 , (1.16) 

 

then the bridge will be in balance.  If r >> R, the formula ΔU = KUε1/4 still can be used. 

 

The gage factor adjustment is a variable potentiometer too (a change in the position of terminal b, 

changes the excitation voltage). The strain indicator was designed for use with gages for which K 

= 2. If K = K' ≠ 2, the output ΔU will be changed to ΔU' = K'Uε/4. Therefore, some correction 

must be made. Since the strain does not change, the reading ΔU' has some error. The correct 

reading should be ΔU. Since 

 

 ΔU =
KUε

4
   and  ΔU′ =

K′Uε′

4
,  (1.17) 

 

the condition to keep the output the same as before is 

 

 Kε =  K′ε′. (1.18) 

 

Therefore, the correct reading ε is 

 

 ε =
K′ε′

K
 (1.19) 
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Figure 1.3: Digital Strain Indicator 

1.3.2.4 Balance Units 

 
Figure 1.4: Balance Unit 

 

For multiple channel measurement, a balance unit must be used.  A balance unit is just like a 

switch.  When a signal from channel 1 is being measured, you switch to channel 1. When a signal 

from channel 2 is being measured, you switch to channel 2 and so on. The only thing you must do 

is to make correct connections.  Figure. 1.4 shows the balance unit and part of the strain indicator.  
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One balance unit can be used to switch up to 10 separate channels.  For a quarter bridge (only R1 

is a strain gauge and the others are dummy resistors) measurement the binding posts P+, P-, S+, S-

, and DEXT on the front panel of the balance unit must be connected to the corresponding front 

panel binding posts of the strain indicator.  For 120 strain gauge, DEXT must be connected to D 

120 of the strain indicator.  The strain gauge must connect to the corresponding channel terminal 

P- and S+ and a group must be made across S+ and P- terminals.  The balance control on the front 

panel of the strain indicator must be set at mid-way.  Now separate channels have their own balance 

controls on the panel of the balance unit. 

 

1.3.3 Determination of Young’s Modulus and Poisson’s Ratio 

Experiment on the extension of prismatic bars under tensile load has shown that within certain 

limits, the elongation of the bar is proportional to the tensile force applied. For many structural 

materials, this simple linear relationship between the force and the elongation it produces was first 

formulated by the English scientist Robert Hooke in 1678 and bears his name. Using the notation: 

 

P = the force-producing an extension of the bar 

L = length of the bar 

A = the cross-sectional area of the bar 

δ = total elongation of the bar 

      E = the elastic constant of the material, called modulus of elasticity or Young’s modulus. 

 

From the above variables Hooke’s law may be given by the following equation: 

 

 𝛿 =
𝑃𝐿

𝐴𝐸
 (1.20) 

 

In a unit axial tension test, the stress  in the prismatic bar is the force per unit of cross-sectional 

area, i.e.: 

 

 𝜎 =
𝑃

𝐴
 (1.21) 

 

Meanwhile, the axial strain is the elongation per unit length, is determined by the equation 

 

 𝜖 =
𝛿

𝐿
 (1.22) 

 

Using equations (1.20), (1.21) and (1.22), Hooke’s law may also be written in the following form: 

 

 𝜎 = 𝐸𝜖 (1.23) 
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It is observed that an axial elongation is always accompanied by lateral contraction of the bar and 

this ratio is named the Poisson’s ratio, , defined as: 

 

 𝜈 =
−(𝑢𝑛𝑖𝑡 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

(𝑢𝑛𝑖𝑡 𝑎𝑥𝑖𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛)
 (1.24) 

 

In the elastic limit  is a constant for a given material. This constant is denoted by and is named 

after the name of French mathematician who determined this ratio analytically by using the 

molecular theory of the structure of the material. 

 

 
Figure 1.5: Stress-strain relationship of a structural steel 

 

     The proportionality between the tensile force and the corresponding elongation holds only up 

to a certain limiting value of the tensile stress, called the proportional limit, which is a material 

property. Beyond this limit, the relationship between stress and strain becomes more complicated. 

Figure 1.5 shows a typical tensile test diagram of structural steel, which gives the relationship 

between stress and strain. From Point O to A, the stress and the strain are proportional. Beyond 

Point A, Hooke’s law no longer applies. Hence, the stress at Point A is the proportional limit. When 

loaded beyond this limit, the strain increases more rapidly for a given increment of stress. At Point 

B, a sudden additional elongation of the bar takes place without an appreciable increase in the 

tensile force. This phenomenon is called the yielding of the material, this typically occurs at a 

strain of 0.2%. The stress corresponding to Point B is called the yield stress. Upon further 

stretching of the bar, the material recovers its resistance and, as is seen from the diagram, the 

tensile force increases with the corresponding increase in elongation. At Point C, where the force 

attains its maximum, the state of stress is called the ultimate strength of the material. Beyond Point 

C, elongation of the bar takes place with decreasing force. Finally, at Point D, fracture of the bar 

occurs. 

 

1.3.4 Experimentation 

A flat specimen with two strain gauges on each side is mounted at the center along x and y-axes, 

respectively shown in Figure. 1.6. The strain gages are connected to a switch balance unit combine 

with a strain indicator to measure the strain. The specimen is to be loaded by a digital universal 

testing machine. The digital display of the testing machine will display the load.  

A

B

C

D

0
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Denoting the strain readings for gage 1 and 2 by  xx
 and  yy , respectively, and noting that 

 

 𝜎𝑥𝑥 =
𝑃

𝐴
, (1.25) 

   

where P is the loading force and A is the section area of the specimen, Young’s modulus, E, can 

be calculated by 

 

 𝐸 =
𝜎𝑥𝑥

𝜖𝑥𝑥
 (1.26) 

 

And Poisson’s ratio, v, can be calculated by 

 

 𝑣 = −
𝜖𝑦𝑦

𝜖𝑥𝑥
 (1.27) 

 

 
Figure 1.6: Diagram of a prismatic bar with strain gages applied 

 

1.4 Experimental Procedure 

1.4.1.1 Determination of Young’s Modulus, E, and Poisson’s Ratio, v 

There are four strain gages on each of the testing specimen, two on each side, to avoid error from 

the flatness of the specimen. Familiarize yourself with their location, orientation, and purpose. 

 

1) Take some time to familiarize yourself with the operation software, the P3 Digital strain 

indicator unit, and the Tinius Olsen digital universal testing machine before running the test. 

2) Measure the width and the thickness of the specimen to find out the section area of the 

specimens. 

3) Run the P3 software to start the setup procedure. 

4) Select CHANNEL: check the channel/channels are being used. Select BRIDGE: check the 

quarter bridge option. Select GAGE FACTOR: input 2.05 as the gage factor for each 

channel.  

5) Select BAL: select auto balance and check ZERO to set all strain gages initially zero. 

6) Set the load and displacement readings on the front panel of the digital testing machine to 

zero. 

y

x

Strain 
Gage 1,2

t
Strain Gage 3,4

P P

b
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7) Clamp the specimen into the upper grip of the testing machine, Use the faster compression or 

tension loading speed to move the lower grip to fit the length of the specimen. Tighten the 

two grips. Use the slowest tensile loading speed to give the specimen an initial load (about 20 

lb.). 

8) Open a folder on the Desktop of the computer using your own group name for saving your 

testing data files. Back to the P3 software and select RECORD. When the record panel 

comes up select “save in the computer”, the testing data files will save in the hard drive. 

9) The load must be applied in steps of 50 lb. The final load for steel specimen is to be 500 lb. 

and the aluminum specimen is to be 300 lb. (before the yield point). At each step take the 

readings of all strain gages. Run the test three times for each specimen (steel and aluminum). 

10) Record the exact initial load and the load readings at each increment manually. At the same 

time check the “record” option on the front panel to begin recording the strain readings. 

When one trial of the test is finished, check “save” on the recording panel. The software will 

ask for file name and location for the testing file. Give a file name and the location of your 

own group folder and check “record”. The testing data file with the given filename will be 

saved. 

1.4.1.2  Tensile test for the stress-strain diagram. 

1) An aluminum specimen is provided for the tensile test to find out the stress-strain diagram. 

Measure the width and the thickness of the specimen to find out the cross-sectional area of 

the specimen. 

2) The upper and a lower fixture used to mount the LVDT are provided, and a digital 

displacement indicator is provided for displacement measurements.  

3) Mount the upper and the lower fixture to the specimen and make the distance to 4 and a half 

inches. Mount the LVDT into the upper fixture and the core of the LVDT rests on the lower 

fixture.  

4) Power on the Digital Testing Machine and the Digital Displacement Indicator Unit.  

5) Adjust the position of the LVDT on the upper fixture to make the reading on the digital 

indicator close to zero and tighten the screw on the upper fixture. Take this zero reading as 

the zero position of the LVDT.  

6) Set the load range of the testing machine at 100%(1000 lb. range). Push the LOAD button 

until the load display “0”.  

7) Insert a known thickness block (0.5 in) between the LVDT and the lower fixture. Take this 

reading and subtract from the zero reading as the calibration reading of -0.5 inches of 

displacement.   

8) Load the specimen with an appropriate loading speed. Take the load and displacement 

readings at the same time until the specimen failure.  

 

1.5 Requirements for Report 

1) Calculate the Young’s modulus E and Poisson’s ratio ν of the steel and aluminum specimen 

using the linear regression method.  

2) Plot out the stress vs. strain curve of the tensile test of the aluminum specimen. Give the 

proportional limit, yield point, and ultimate strength of the material. 
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3) Find out the uncertainties of the experimental results and the uncertainty tree. 

1.6 References 

 "An Introduction to the Mechanics of Solids", 2nd Edition by Stephen H. Crandall, Norman 

C. Dahl, and Thomas J. Lardner, Published by McGraw-Hill Book Company, 1976. 

 "Experimental Stress Analysis", 2nd Edition, by J.W. Dally and W.F. Riley, Published by 

McGraw-Hill Book Company. 1978. 

 "The Dynamical Behavior of Structures", 2nd Edition by G.B. Warburton, Published by 

Pergammon Press Ltd., 1976. 
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2 LAB 2: NATURAL VIBRATION MODES OF A CANTILEVER 

BEAM 

 

2.1 Objectives 

1. Familiarization with the operation of the instruments used to generate and study vibrations.  

2. Understand the dynamical behavior of a vibrating cantilever. 

 

2.2 Equipment 

● Digital Function Generator 

● Power Amplifier 

● Shaker 

● Piezoelectric Sensor 

● Oscilloscope 

● Strobe Light. 

 

2.3 Background Knowledge 

Techniques used to model and study vibrations are vital to successful mechanical design. When 

an object is excited at one of its natural frequencies it causes a mechanical resonance. This means 

the system will be responding at a greater amplitude to an induced vibration or oscillatory load. 

Often this will lead to violent, and potentially catastrophic, failure of the system. The goal then is 

to design a system such that operational conditions do not cause these resonance effects. 

 

2.3.1 Deriving the Equation of Motion and its Solution for a Uniform Cantilever Beam 

In deriving the equation governing free undamped vibration in flexure of beams it is assumed that 

vibration occurs in one of the principle planes of the beam. The effects of rotatory inertia and of 

transverse shear deformation are neglected. Gravitational forces will also be neglected by 

measuring the displacement from the position of static equilibrium of the beam. 
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Figure 2.1: Free Body Diagram of a differential element of a beam experiencing vibrational 

flexure 

 

In Figure 2.1, the line BC represents the centerline of the beam during vibration; the displacement 

at any section x at time t is denoted by v. The forces and the moments on an element of length dx 

are shown also in Figure 1; S and M are the shear force and bending moment respectively at section 

x; the inertial force on the element is  

 

 𝜌𝐴𝑑𝑥
𝜕2𝑣

𝜕𝑡2
 (2.1) 

 

Where ρ is the density of the material of the beam and A is its cross-sectional area. 

 

Taking moments about the center line of the element (neglecting products of small quantities), and 

resolving for forces in the Y-direction we obtain the moment equation 

 

 𝑆𝑑𝑥 + 𝑀 − (𝑀 +
𝜕𝑀

𝜕𝑥
𝑑𝑥) = 0  (2.2) 

 

or 

 

 𝑆 =
𝜕𝑀

𝜕𝑥
 (2.3) 

 

And the force equation,  

 

 
𝜕𝑆

𝜕𝑥
= 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
 (2.4) 

 

From the relation between bending moment and curvature and the approximate curvature-

displacement relation, used in determining static deflections of beams, we have 
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 𝑀 = −𝐸𝐼
𝜕2𝑣

𝜕𝑥2
, (2.5) 

 

where E is Young’s modulus and I is the relevant second moment of area of the cross-section (in 

this case: 
𝑏ℎ3

12
). Combining equations (2.3) to (2.5) we obtain 

 

 
𝜕2

𝜕𝑥2
(−𝐸𝐼

𝜕2𝑣

𝜕𝑥2
) = 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
 (2.6) 

 

Equation (2.4) can be used for uniform and non-uniform beams; for the latter the flexural rigidity 

(EI) and the mass per unit length (ρA) are functions of the coordinate x. For a beam of uniform 

cross-section, Equation (2.6) reduces to  

 

 𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
= 0 (2.7) 

 

Which is the equation of motion for the beam. For free vibration, 𝑣(𝑥, 𝑡) must be a harmonic 

function of time such that 

 

 𝑣(𝑥, 𝑡) = 𝑉(𝑥) 𝑠𝑖𝑛(𝜔𝑡 + 𝛼) (2.8) 

 

Substituting equation (8) in (7), we obtain 

 

 
𝑑4𝑉

𝑑𝑥4
−

𝜌𝐴𝜔2

𝐸𝐼
𝑉 = 0. (2.9) 

 

A solution of Equation (9) of the form  

 

 𝑉 = 𝐵𝑒𝜆𝑜𝑥 (2.10) 

 

is satisfactory, if  

 

 𝜆0
4 =

𝜌𝐴𝜔2

𝐸𝐼
. (2.11) 

 

This has four roots of 

 

𝜆0 = ± 𝜆 

And  
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𝜆0 = ± 𝑖𝜆 

 

Where  

 

 𝜆 = (
𝜌𝐴𝜔2

𝐸𝐼
)

1
4

 (2.12) 

 

Of which the general solution is  

 

 𝑉 = 𝐵1 sin(𝜆𝑥) + 𝐵2 cos(𝜆𝑥) + 𝐵3 sinh(𝜆𝑥) + 𝐵4cosh(𝜆𝑥)  (2.13) 

   

2.3.2 Specification of End Conditions 

The four constants are determined from the end conditions; the standard end conditions are: 

 

a) Simply supported or pinned, for which the displacement is zero and the bending 

moment is zero as there is no rotational constraint  

 

b) Fixed or clamped for which the displacement and slope are zero 

 

c) Free, for which the bending moment and shear force are zero.  

  

In terms of function 𝑉(𝑥) these conditions for a uniform beam are: 

 

a) Simply supported:  

 𝑉 = 0 𝑎𝑛𝑑 
𝑑2𝑉

𝑑𝑥2
= 0 (2.14) 

b) Clamped: 

 𝑉 = 0 𝑎𝑛𝑑 
𝑑𝑉

𝑑𝑥
= 0 (2.15) 

c) Free: 

 
𝑑2𝑉

𝑑𝑥2
= 0 𝑎𝑛𝑑 

𝑑3𝑉

𝑑𝑥3
= 0 (2.16) 
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2.3.3 The Natural Frequencies of a Cantilever 

 
Figure 2.2: First Three Vibrational Modes and Natural Frequencies of a Cantilever Beam 

 

With the origin at the fixed end, as in Figure 2.2, and using Equations (2.15) and (2.16), the end 

conditions are: 

 

a) At x = 0 , V = 0, or 0 = 𝐵2 + 𝐵4 . 

 

b) At x = 0 , 
𝑑𝑉

𝑑𝑥
 = 0, or 0 = 𝜆𝐵1 + 𝜆𝐵3 . 

 

c) At x = L,  
𝑑2𝑉

𝑑𝑥2 = 0, or:  0 = 𝜆2(−𝐵1 sin(𝜆𝐿) − 𝐵2 cos(𝜆𝐿) + 𝐵3 sinh(𝜆𝐿) + 𝐵4cosh(𝜆𝐿)). 

 

d) At x = l, 
𝑑3𝑉

𝑑𝑥3 = 0, or:   0 = 𝜆3(−𝐵1 cos(𝜆𝐿) + 𝐵2 sin(𝜆𝐿) + 𝐵3 cosh(𝜆𝐿) + 𝐵4sinh(𝜆𝐿)) 

 

Hence 

 

 𝐵3 = −𝐵1 (2.17) 

 

And 

 

 𝐵4 = −𝐵2 (2.18) 

 

And 

 

 𝐵1(sin(𝜆𝐿) + sinh(𝜆𝐿)) + 𝐵2(cos(𝜆𝐿) + cosh(𝜆𝐿)) = 0 (2.19) 
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And 

 

 −𝐵1(cos(𝜆𝐿) + cosh(𝜆𝐿)) + 𝐵2(sin(𝜆𝐿) − sinh(𝜆𝐿)) = 0 (2.20) 

 

Using Equations (2.19) and (2.20), a matrix is formed to eliminate B1 and B2 as follows: 

 

 [
(sin(𝜆𝐿) + sinh(𝜆𝐿)) (cos(𝜆𝐿) + cosh(𝜆𝐿))

−(cos(𝜆𝐿) + cosh(𝜆𝐿)) (sin(𝜆𝐿) − sinh(𝜆𝐿))
] {

𝐵1

𝐵2
} = {

0
0

} (2.21) 

 

To remove B1 and B2 the determinate of the matrix is used. 

 

 (sin2(𝜆𝐿) − sinh2(𝜆𝐿)) + (cos(𝜆𝐿) + cosh(𝜆𝐿))
2

= 0 (2.22) 

or 

 

 sin2(𝜆𝐿) + cos2(𝜆𝐿) + 2 cos(𝜆𝐿) cosh(𝜆𝐿) + cosh2(𝜆𝐿) − sinh2(𝜆𝐿) = 0 (2.23) 

 

or  

 

 cos(𝜆𝐿) cosh(𝜆𝐿) = −1 (2.24) 

 

The successive roots, λ1, λ2, λ3, … of Equation (2.24), from which the natural frequencies can be 

obtained, are given by  

 
𝜆1 =

1.875

𝐿
, 𝜆2 =

4.694

𝐿
, 𝜆3 =

7.855

𝐿
, 𝜆𝑟 ≈

(𝑟 −
1
2) 𝜋

𝐿
 𝑓𝑜𝑟 𝑟 ≥ 4 

(2.25) 

 

and the natural frequency can be determined with Equation (2.12) substituting values from 

Equation (2.25) will allow the natural frequencies to be expressed in terms of material properities. 

 

 𝜔𝑛 = (𝜆𝑛)2√
𝐸𝐼

𝜌𝐴
 (2.26) 

 

The shape of the rth mode, in terms of a single arbitrary constant, is 

 

 Vr(x)  =  Br [cosh(λrx) − cos(λrx) + η(sinh(λrx) − sin(λrx))] (2.27) 
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where 

 

 η =
cosh(λrx) + cos(λrx)

sinh(λrx) + sin(λrx)
 (2.28) 

   

2.3.4 Determination of the Natural Frequencies of a Uniform Cantilever Beam 

This experiment is designed to give students a physical view of the nature of the dynamical 

behavior of a vibrating cantilever by measuring the natural frequencies and observing the vibration 

mode shapes of the cantilever beam using both an electronic and a visual technique.  

 

A digital function generator, a power amplifier, a shaker, a cantilever beam, a piezoelectric sensor, 

an oscilloscope, and a strobe light will be used in this experiment.  

 

A digital function generator is used to create a digital signal at a specified, and adjustable, 

amplitude and frequency. The sinusoidal electric signal produced by the digital function generator 

is sent to the power amplifier. The signal from the function generator is then amplified such that it 

is powerful enough to activate the shaker. The shaker is excited by the amplified input signal and 

will create an oscillatory vibration in phase with it. The vibration tip of the shaker is centered about 

the entire beam as show in Figure 3 and defines the fixed end of the cantilever experiment. The 

pulses provided by the shaker will excite the cantilever beam such that the material vibrates based 

the input signal to the shaker, and the materials properties.  

 

A piezoelectric sensor shall be used to empirically determine the vibration characteristics of the 

cantilever beam. The piezoelectric sensor contains a special material, often a ceramic, which 

generates an electric charge in response to mechanical stress. When the sensor is under dynamic 

loading, it will produce electricity, and if excited by an AC signal it can be used to measure 

dynamic force. The output of the piezoelectric is connected to an oscilloscope. Since the deflection 

of the cantilever is always higher when the beam is vibrating at one of the natural frequencies the 

output from the piezoelectric is also higher at these frequencies. Due to this, as one modulates the 

frequency provided by the function generator such that it approaches and then passes through one 

of natural frequencies, they will see a sine wave that increases in size to a peak and then rapidly 

begins to decline in size. This behavior shall repeat for each natural frequency.  

 

A strobe light shall be used to provide a visual check of the frequencies determined used the 

oscilloscope. The strobe light is a frequency adjustable flashing light. When the cantilever is 

excited at one of its natural frequencies, the strobe can adjusted to flicker at a multiple of the 

natural frequency of the cantilever, the vibration modes can be seen clearly. However, due to the 

active length of the specimen higher order natural frequencies may be difficult (or impossible) to 

detect visually. 

2.4 Experimental Procedure 

1. Review the experimental setup as shown in Figure 2.3. Ensure that all components are 

powered off. 
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2. Open the Natural Frequencies LabVIEW application. Take note of the Input and Output 

sections and what information is contained within them. 

3. If the Cantilever beam is in the beam clamp, remove it. After which take the following 

measurements of the beam using the provided inspection equipment. 

a. Measure the Total Beam Length. 

b. Measure the Beam Width. 

c. Measure the Beam Height. 

d. Measure the Beam Weight. 

e. Look up the Young’s modulus for the material(ask the instructor what the material 

is). 

4. Replace the specimen in the Beam Clamp. Ensure that the specimen is well clamped.  

5. Measure the Active Beam Length (See Figure 2.3). The Active Beam Length should be 

about 12 inches. 

6. Run the Natural Frequencies application. Take note of the natural frequencies. These are 

your theoretical values. 

7. Ensure all connections are made properly. Power on all of the equipment. 

8. Set the frequency on the function generator to a value 10% less than to the natural 

frequency. Ask your instructor for assistance using the function generator as the equipment 

may be different from group to group. 

9. Slowly turn up the gain on the power amplifier until the beam begins to move. Do not over 

excite the beam, this can damage and break it. 

10. Turn up the frequency on the function generator using coarse adjustment while watching 

the oscilloscope (Note: You will have to make changes to the voltage and time settings to 

keep the waveform with the area of the screen). Continue to do this until you see the wave 

form begin to decrease in size. Confirm this behavior with your instructor. 

11. When you have empirically determined a natural frequency, set the strobe light 

appropriately and then shine it at the beam. Take note of the oscillatory behavior of the 

beam. 

12. Repeat Steps 8 – 11 for each natural frequency. 
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Figure 2.3: Experimental setup for Vibration Test
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3 LAB 3: LABVIEW BASED INSTRUMENTATION TO 

CALIBRATE A LINEAR VARIABLE DIFFERENTIAL 

TRANSFORMER, AND DC VOLTAGE AND AC SIGNAL 

MEASUREMENTS 

 

3.1 Objectives 

Through a data acquisition (DAQ) computer system create a LabVIEW program to find out the 

Displacement-Output Voltage relationship of a LVDT, understand the basic principle of a LVDT, 

and create programs using LabVIEW to measure DC voltage and AC signal. 

 

3.2 Equipment 

● Stand with a micrometer 

● LVDT 

● Power for LVDT 

● DC Power Supply 

● Digital Function Generator 

● NI USB 6008 DAQ Box 

● Laptop with NI DAQmax and LabVIEW software 

 

3.3 Background Knowledge 

3.3.1 LVDT Principles of operation 

The LVDT is frequently used to measure displacements and produces an analog signal output.  It 

can be used with computer aided data acquisition systems. 

 

A schematic diagram of the differential transformer is shown in Figure. 3.1.  Three coils are placed 

in a linear arrangement as shown with a magnetic core which may move freely inside the coils.  

The construction of the device is indicated in Figure. 3.2.  An alternating input voltage is impressed 

in the center coil, and the output voltage from the two end coils depends on the magnetic coupling 

between the core and the coils.  This coupling, in turn, is dependent on the position of the core.  

Thus, the output voltage of the device is an indication of displacement of the core.  
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Figure 3.1: Schematic diagram of differential transformer 

 

 
Figure 3.2: Construction of differential transformer device 

 

The excitation of such devices is normally a sinusoidal voltage of 3 to 15 V RMS amplitude 

and frequency of 60 to 20,000 Hz.  The two identical secondary coils have induced in them 

sinusoidal voltages of the same frequency as the excitation; however, the amplitude varies with 

the position of the iron core.  When the secondary coils are connected in series opposition, a null 

position exists at which the net output E0 is essentially zero.  Motion of the core from null then 

causes a larger mutual inductance (coupling) for one coil and a smaller mutual inductance for the 

other, and the amplitude of E0 becomes a nearly linear function of core position for a considerable 

range either side of null.  The voltage E0 undergoes a 180o phase shift in going through null. 

 These instruments record the actual waveform of the output as an amplitude-modulated 

sine wave, which is usually undesirable.  What is desired is an output-voltage record that looks 

like the mechanical motion being measured.  To achieve the desired results, demodulation and 

filtering must be performed; if it is necessary to detect unambiguously the motions on both sides 

of null, the demodulation must be phase-sensitive. 

Figure. 3.3 shows the circuit arrangement for phase-sensitive demodulation using 

semiconductor diodes.  Ideally, these pass current only in one direction; thus, when f is positive 

and e is negative, the current path is efgcdhe, while when f is negative and e positive, the path is 

ehedgfe.  The current through R is therefore always from c to d. A similar situation exists in the 

lower diode bridge.  It is then necessary to connect e0 of Figure. 3.3 to the input of a low-pass filter 
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which will pass the frequencies present in xi but reject all those (higher) frequencies produced by 

the modulation process.  The design of such a filter is eased by making the LVDT excitation 

frequency much higher than the xi frequencies. 

 

3.3.2 Calibration of LVDT 

The output from an LVDT is an analog signal proportional to the displacement.  The relationship 

between the displacement and the output voltage must be found through the calibration procedure 

so that the displacement can be determined from the calibration curve afterward. 

 

 
 

Figure 3.3: circuit arrangement for phase-sensitive demodulation by semiconductor 

diodes 
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3.3.3 DC Voltage Resolution 

 

 𝑉𝑐𝑤 =
𝑟𝑎𝑛𝑔𝑒

2𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
, (3.1) 

 

Where the resolution is given in bits. For example, a 12-bit DAQ board with a 0 to 10 V range 

detects a 2.4 mV change. This is calculated as follows: 

 

 𝑉𝑐𝑤 =
𝑟𝑎𝑛𝑔𝑒

2𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
=

10𝑉

212
= 2.4𝑚𝑉, (3.2) 

 

While the same board with a -10 to 10V range detects only a change of 4.8 mV: 

 

 𝑉𝑐𝑤 =
𝑟𝑎𝑛𝑔𝑒

2𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
=

20𝑉

212
= 4.8𝑚𝑉, (3.3) 

 

 
Figure 3.4: Comparison of resolution (16-bit vs. 3-bit for 5 kHz sine wave) 

 

3.3.4 AC Signal Sampling Rate 

Sampling rate must be sufficiently higher than the measuring frequency. Usually, Sampling rate is 

selected as 30 times of measuring frequency. 



Lab 3: LabVIEW Based Instrumentation to Calibrate a LVDT, and DC Voltage and AC Signal Measurements 
 

31 
 

 
Figure 3.5: Effect of sampling rate in obtaining the analog signal 

 

3.4 Experimental Procedures 

3.4.1 LVDT Calibration and measurement 

Insert the LVDT into the calibration unit. 

1. Connect the black and red wires from the LVDT to the power supply unit (12V). Connect 

the output wires from the LVDT to a specific input channel of NI USB 6008 DAQ module. 

2. It is recommended to open the NI MAX software to obtain the device number of NI USB 

6008 DAQ module and input channel connected. 

3. Create a program using LabVIEW to do the calibration task. 

 

• On Block Diagram from EXPRESS to INPUT get the DAQ assist Vi----Acquire 

Signal-----Analog Input----Voltage then check the device number should agree with 

the device number in “devices and interfaces” in NI MAX. Use the DAQ Vi to acquire 

data. Set sampling rate at 1000 and number of samples at 1000 too. From 

MATHMATICS to PROBOBILITY and STASTISTICS and get the MEAN Vi  for 

average the data.  

• From EXPRESS to OUTPUT get the WRITE TO MEASUREMENT FILE Vi and open 

the “properties”.  

            [Properties] 

                Filename-----LVDT 

                Action-----Save to one file 

                If a file already exists-----Append to file 

                File format-----Text (LVM) 

                Segment headers-----No headers 

                X value (time) columns-----Empty time columns 

                Delimiter-----comma  

• On Front Panel popup the Controls to get the Waveform Graph and Numeric     

Indicator display the acquire voltage. The Waveform Graph and Numeric Indicator Vis 
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will appear on the block diagram. Wire these Vis up correctly to complete the 

LabVIEW program. This program will be used to perform the LVDT calibration.   

4. Push the LVDT all the way to the extreme position against the flat tip of the micrometer 

and screw tight the LVDT. 

5. Use the created LabVIEW program to read the LVDT output voltage. 

6. Start to turn the micrometer in steps, each step should be 0.01 in or 0.5 mm, and take a 

reading of the LVDT output until 0.3 in or 6 mm. 

7. Use MS-EXCEL program to open the data file to access the calibration data. 

 

3.4.2 DC Voltage Measurement 

1. Connect the DC voltage output to NI USB 6008 DAQ box AI0 input. 

2. Connect the NI USB 6008 DAQ box through the USB connecter of the laptop. 

3. Turn on the laptop and the DC power supply. 

4. Run the LabVIEW program and create a Blank VI. 

5. On the Block Diagram pop up the Functions Palette. 

6. Get the DAQ assist VI from Express-Input. 

7. Run the Measurement & Automation, from Devices and Interfaces find out the NI USB 

6008 device number x. 

8. Configure the DAQ assist VI to Acquire Signals-Analog Input-Voltage-Dev x –AI0. 

Terminal Configuration should be RSE (reference single end). Signal input range should 

be 10V to -10V. 

9. On the Front Panel popup the Control Palette, open the Graph Indicators and get the Graph. 

Get two Numeric Controls for number of sample and sampling rate. Get a numeric 

indicator to display voltage. 

10. On the Block Diagram pop up the Function Palette. Get the Mean VI from Mathematic - 

Prob & Stat. 

11. Wire up all these Vis to make a program for DC voltage measurement. 

12.Get 3 or 4 different voltage from the power supply. Run the LabVIEW program you created 

and check the voltage compare with the power supply display. 

 

3.4.3 AC signal measurement  

1. Connect the AC signal output from the Digital Function Generator to the AI1 input of NI 

USB 6008 DAQ module. 

2. Create a Blank VI.  

3. On the Block Diagram, pop up the Function Palette to get the DAQ Assist VI from Express 

to Input, and configure the VI to Acquire Signal-Analog Input- Voltage-Dev x – AI1.  

4. From Express to Output, get the Write to Measurement File VI and go to Properties and 

make the file format to Text. In Action, use Ask User To Choose File and check Ask Each 

Iteration. In If A File Already Exists check Rename Existing File. In X 

Value(Time)Columns, check One Column Only. 

5. Point the Wire tool to Sample and Rate of the DAQ assist VI terminals, to create two digital 

controls for Sampling Rate and Number of Sample.  
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6. On the Front Panel pop up the Control Palette, open the Graph Indicator and get the 

Waveform Graph.   

7. On the front Panel use the Wire tool to touch the Rate terminal of the DAQ assist Vi and 

pop up----create----control to get the sampling rate digital control. Pop up the sample 

terminal----create----control to get number of sample digital control. Wire up the data 

output from the DAQ assist VI to the signal input of the Write to the Measurement File VI 

and the Graph VI. 

8.  Chose a few frequencies from 30 Hz to 300 Hz.  

9. The sampling rate must be 30X of the set frequency. 

10. Number of samples used should be 100. 

11. Set the frequency on the Digital Function Generator and run the LabVIEW program. 

12. Specify the data file name and save properly. 

13. Use MS-Excel program to open the data file (all file). 

14. Find out the frequency from the stored data and compare with the frequency set in the 

function generator. 

3.5 Data Analysis 

1. Plot out the displacement-voltage output curve of the LVDT. 

2. Use linear curve fitting to determine the calibration curve and associated uncertainties. 

3. Compare the DC voltage value from the power supply, and the value acquired from the 

DAQ 

4. Calculate the frequency of the AC signal measured with the DAQ, and compare with the 

output of the signal generator 

5. Analyze the uncertainty of the above analysis, and show an uncertainty tree. 
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4 LAB 4: PHOLOELASTIC STRESS ANALYSIS OF BEAMS 

 

4.1 Objectives 

1. Familiarization with the operations of a polariscope 

2. Understanding of the elementary photoelastic method for stress measurement 

3. Determination of photoelastic material stress fringe value fσ using a beam under pure 

bending 

4. Develop understanding of the neutral axis of a beam under bending 

 

4.2 Specimens and Instrumentations 

1. Polariscope 

2. HD digital camera and LCD TV 

3. Photoelastic beam specimen for pure bending and three-point bending tests 

 

4.3 Background Knowledge 

4.3.1 Double Refraction and Stress Optical Law 

The method of photoelasticity is based on the principle of double refraction observed in a certain 

class of transparent materials called photoelastic or birefringent materials. This double refraction 

is a temporary phenomenon associated with the mechanical stressing of the object. When the loads 

are removed, the optical property of the material returns to normal, which means it will be optically 

isotropic. Consider a ray of light Ri entering a birefringent medium I from free space o (see Figure. 

4.1). Assuming that the object is free of stresses, one can observe the refraction of light based on 

Snell’s Law. Let Rr be the refracted ray and i and γ be angles of incidence and refraction measured 

with respect to the surface normal. The ratio 
sin 𝑖

sin 𝛾
 is then the refractive index 𝑛10. 

 

 
Figure 4.1: Behavior of light in a Birefringent Medium 
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Now, consider a birefringent medium subjected to external loads. For every incident ray Ri, double 

refraction gives rise to two refracted rays, Ro
 
and Re

 
at different angles 𝛾0

 
and 𝛾𝑒 respectively with 

respect to the normal. These two rays propagate inside the medium with different velocities. When 

they exit from the medium, a phase difference Δ has occurred between the two waves. This phase 

difference is the result of stress in the medium and their relationship is the stress-optical law given 

below  

 

 𝜎1 − 𝜎2 =
𝛥

2𝜋

𝑓𝜎

𝐷
=

𝑁𝑓𝜎

𝐷
 (4.1) 

 

where N is the fringe order, 𝑓𝜎  is the material stress fringe value and D the thickness of the 

birefringent material; 𝜎1, 𝜎2 are the two principal stresses, and in photoelasticity, it is always 

assumed that𝜎1 ≥ 𝜎2. Thus, once the fringe order is known, the principal stress difference 𝜎1 − 𝜎2 

at any point can be determined. 

 

4.3.2 Polariscope 

The instrument that enables one to determine the stress-induced phase difference is called a 

polariscope. There are two types of polariscopes. One is called a plane polariscope. Its optical 

elements consist of one polarizer and one analyzer. A polarizer is an optical element that only 

allows a light vector to oscillate along a predetermined direction. An analyzer is also a polarizer 

that is used to analyze the polarization state of the impinging light. As shown in Figure. 4.2, the 

direction of polarization of polarizer P and analyzer A are perpendicular to each other. 

 

 
Figure 4.2: Optical arrangement of a plan polariscope 

 

It can be shown that the intensity of light that immerges from the analyzer when a stressed 

photoelastic model is placed between them is given by the following equation, 

 

 𝐼 = 𝐾 sin2 𝛼  ×  sin2
Δ

2
 (4.2) 
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where K is a constant, α the angle between 𝜎1 and the axis of the polarizer and Δ the stress-induced 

phase difference. Two type of dark fringes are observed. One is the result of 

 

   𝐼 = 0, when sin 𝛼 = 0, 𝛼 = 𝑛𝜋; 𝑛 = 0,1,2,3 … 

 

These fringes are called isoclinics, or locations of points of equal principal directions. The other 

type of dark fringes is the result of 

 

   𝐼 = 0, when sin
Δ

2
= 0,

Δ

2
= 𝑛𝜋; 𝑛 = 0,1,2,3 … 

since 

𝑁 =
Δ

2𝜋
= 𝑛 ; 𝑛 = 0,1,2,3 … 

 

is nothing but the fringe order given in the stress-optical law. These fringes are called 

isochromatics because they appear as colored in a white light illumination, except the zeroth order 

fringe which is always dark. 

 

The second type of polariscope is the circular polariscope whose optical arrangement is as shown 

in Figure. 4.3. It has two more optical elements called quarter wave plates. The first quarter wave 

plate converts a plane-polarized light emerging from the polarizer with a circularly polarized light. 

The second quarter wave plate with its fast axis and slow axis orientation reversed cancels the 

effect of the first quarter wave plate. It can be shown that if a stressed photoelastic model is placed 

in between the two quarter-wave plates of a circular polariscope the presence of the isoclinics is 

eliminated. The resulting light intensity emerges from the analyzer is simply,  

 

 𝐼 = 𝐾′ sin2
Δ

2
, (4.3) 

 

where K’ is a constant. It can also be shown that if the analyzer is turned 90° so that it is parallel 

to the axis of the polarizer the intensity of the light that emerges is given by 

 

 𝐼 = 𝐾′ cos2
Δ

2
. (4.4) 

 

Thus, 

 

    𝐼 = 0, when 
Δ

2
=

(2𝑛+1)𝜋

2
; 𝑛 = 0,1,2,3 … 

 

And the isochromatic fringe order N is 

 



Lab 4: Pholoelastic Stress Analysis of Beams 

37 
 

𝑁 =
Δ

2𝜋
=

2𝑛 + 1

2
= 𝑛 +

1

2
; 𝑛 = 0,1,2,3 … 

 

These are the half order fringes. 

 

 
Figure 4.3: Optical arrangement of a circular polariscope 

 

4.3.3 Determination of material stress fringe value ‘fσ’ for the given material.                                                                                                                                     

The stress-optical law 𝜎1 − 𝜎2 =
𝑁𝑓𝜎

𝐷
 is the basic equation for photoelasticity experiments. N is the 

fringe order that can be determined from the fringe pattern of the model. D is the thickness of the 

model. 𝑓𝜎 is the material stress fringe value. It is different for different photoelasticity materials. 

Therefore, the determination of the material stress fringe value 𝑓𝜎 for different photoelasticity 

materials in photoelasticity experiments is key to finding out the principal stresses of the model. 

Several experiments can be used to determine the material stress fringe value 𝑓𝜎. The four-point 

bending experiment is the most common. 

  

4.3.4 The theoretical prediction for pure bending beam. 

When a beam is under pure bending, the shearing force is zero at every cross section. An example 

of such bending is shown in Figure.4.4. From the balance of forces, we conclude that the reactions 

in this case are equal to 
𝑃

2
. Considering the equilibrium of the portion of the beam to the left of 

cross section mm, it can be concluded that the internal forces which are distributed over the cross 

section mm and which represent the action of the removed right portion of the beam on the left 

portion must be statically equivalent to a couple equal and opposite to the bending moment 
𝑃𝑎

2
. To 

find the distribution of these internal forces over the cross section, the deformation of the beam 

must be considered. For the simple case of a beam having a longitudinal plane of symmetry with 

the external bending couples acting in this plane, bending will take place in this same plane. If the 

beam is of rectangular cross section and two adjacent vertical lines mm and pp are drawn on its 

sides, a direct experiment shows that these lines remain straight during bending and rotate so as to 

remain perpendicular to the longitudinal fibers of the beam (Figure. 4.5). 
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Figure 4.4: A beam under pure bending 

 

The following theory of bending is based on the assumption that not only such lines as mm remain 

straight, but that the entire transverse section of the beam, originally plane, remains plane and 

normal to the longitudinal fibers of the beam after bending. Experiment shows that the theory 

based on this assumption gives very accurate results for the deflection of beams and the strain of 

longitudinal fibers. 

 

From the above assumption, it follows that during bending cross sections mm and pp rotate with 

respect to each other about axes perpendicular to the plane of bending so that longitudinal fibers 

on the convex side suffer extension and those on the concave side suffer compression. 

 
Figure 4.5: Bending deformation of a beam under pure bending 

 

The line nn1 is the trace of the surface in which the fibers do not undergo strain during bending. 

This surface is called the neutral surface, and its intersection with any cross-section is called the 

neutral axis. The elongation 𝑠′𝑠1 of any fiber at distance y from the neutral surface is obtained by 

drawing the line n1s1 parallel to mm (Figure.4.5). Denoting by r the radius of curvature of the 

deflected axis of the beam and using the similarity of the triangles non1 and 𝑠1𝑛1𝑠′, the unit 

elongation of the fiber  is 
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 𝜖𝑥𝑥 =
𝑠′𝑠1

𝑛𝑛1
=

𝑦

𝑟
 (4.5) 

 

It can be seen that the strain of the longitudinal fibers, are proportional to the distance y from the 

neutral surface and inversely proportional to the radius of curvature. From the strains of the 

longitudinal fibers, the corresponding stresses follow from Hooke’s law:  

 

 𝜎𝑥𝑥 = 𝐸𝜖𝑥𝑥 (4.6) 

 

or 

 

 𝜎𝑥𝑥 =
𝐸𝑦

𝑟
 (4.7) 

 

The distribution of these stresses is shown in Figure 4.6. The stress in any fiber is proportional to 

its distance from the neutral axis nn. The position of the neutral axis and the radius of curvature r, 

the two unknowns in Eq. (4.6) and Eq. (4.7), can now be determined from the condition that the 

forces distributed over any cross-section of the beam must give rise to a resisting couple M (Figure. 

4.5). 

 

Let dA denote an elemental area of the cross-section at distance y from the neutral axis (Figure. 

4.6). The force acting on this elemental area is the product of the stress (Eq. 4.6 & Eq. 4.7) and the 

area dA, or 

 

 𝐹 =
𝐸𝑦

𝑟
𝑑𝐴. (4.8) 

 

                           
                         Figure 4.6: Stress distribution of a beam under pure bending 

 

Due to the fact that all such forces distributed over the cross-section represent a system equivalent 

to a couple, the resultant of these forces in the x-direction must be equal to zero and we obtain 
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 ∫
𝐸𝑦

𝑟
𝑑𝐴 =

𝐸

𝑟
∫ 𝑦𝑑𝐴 = 0 (4.9) 

 

Which is the moment of the area of the cross-section with respect to the neutral axis is equal to 

zero. Hence the neutral axis passes through the centroid of the section. The moment of the force 

acting on the element dA with respect to the neutral axis is 

 

 𝑀 =
𝐸𝑦

𝑟
∗ 𝑑𝐴 ∗ 𝑦 (4.10) 

 

Adding all such moments over the cross-section and putting the resultant equal to the moment M 

of the external forces, the following equation for determining the radius of curvature r is obtained: 

 

 ∫
𝐸

𝑟
𝑦2𝑑𝐴 =

𝐸𝐼𝑧

𝑟
= 𝑀 (4.11) 

 

or 

 

 
1

𝑟
=

𝑀

𝐸𝐼𝑧
 (4.12) 

 

In which 

 

 𝐼𝑧 = ∫ 𝑦2𝑑𝐴 (4.13) 

 

is the moment of inertia of the cross-section with respect to the neutral axis z. From Eq.(4.9) it is 

seen that the curvature varies directly as the bending moment and inversely as the quantity EIz, 

which is called the flexural rigidity of the beam. Elimination of r from Eqs. (4.7) and (4.10) gives 

the following equation for the stresses: 

 

 𝜎𝑥𝑥 =
𝑀𝑦

𝐼𝑧
. (4.14) 

 

In this equation, M is positive when it produces a deflection of the bar convex down, as in Figure. 

4.5; y is positive in the downward direction. In the case of a rectangular cross section we have: 

 

 𝐼𝑧 =
𝑏ℎ3

12
. (4.15) 
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For a circular cross-section of diameter d: 

 

 𝐼𝑧 =
𝜋𝑑4

64
 (4.16) 

 

4.3.5 Determination of the material stress fringe value fσ by pure bending beam. 

A four-point bending beam is shown in Figure. 4.7a. Let two 
𝑝

2
 be the symmetrically applied loads 

separated by a distance 𝑙1 is shown. Let 𝑙2 be the span between supports. A zone of constant 

bending moment M and zero shear force zone exist in the span 𝑙1. Thus, the 2-D stress components 

in the span 𝑙1 are 𝜎𝑦𝑦 = 0, 𝜏𝑥𝑦 = 0, and 𝜎𝑥𝑥 =
𝑀𝑦

𝐼
 where I is the moment of inertia of the beam, y 

is the y coordinate of any point under the consideration and  

 

 𝑀 =
[(

𝑃
2) (𝑙2 − 𝑙1)]

2
= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(4.17) 

 

 
Figure 4.7: Specimen under bending (a) four-point pure bending, (b) three-point bending 

 

Since the 𝜎𝑥𝑥 is the only fiber stress, it is the principal stress 𝜎1 with 𝜎2 being zero. Thus, 

 

 𝜎𝑥𝑥 =  
𝑀𝑦

𝐼
=

𝑁𝑓𝜎

𝐷
 (4.18) 

 

Or 

 

 𝑓𝜎 =
𝑀𝐷

𝐼

𝑦

𝑁
 (4.19) 
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4.4 Experimental Procedure: 

4.4.1 Observation of the isochromatic fringe pattern. 

1. A load cell is mounted on the loading frame that connected to a strain indicator to indicate 

the load. The gage factor of the strain indicator should be set to 3.94 by pre-calibration to 

indicate the load in ‘lb’. 

2. Turn on the strain indicator, push down the Amplifier button, adjust the Amplifier Zero 

adjustment and zero the output reading. 

3. Push down the Gage Factor button, adjust the gage factor turning knobs to set the gage factor 

to 3.94. 

4. Push down the Run button, use the balance control to set the reading to zero again. 

5. Turn on the light source. The optical arrangement should be set as shown in Figure. 4.3, 

crossed circular polariscope. 

6. Measure the thickness and the height of the beam. 

7. Measure the distance between the supports of the base fixture (the span). Measure the 

distance of the loading points of the upper loading fixture. 

8. Place the photoelastic beam with the fixtures for four-point bending onto the loading frame. 

Adjust the height of the moving frame and the HD camera to obtain a clear image of the 

beam on the LCD TV screen. 

9. Apply some load to the beam, the colored isochromatic fringes should appear. Adjust the 

fixtures to obtain a symmetric isochromatic fringe pattern. 

 

4.4.2 Determination of the fringe order.   

1) The fringe order can be determined from the theoretical prediction of a pure bending beam. 

Knowing that the neutral axis of the beam coincides with the x-axis, we can ascertain that the        

N = 0 fringe also coincides with the x-axis of the beam. Since 𝜎𝑥𝑥
 
varies linearly from zero at 

y = 0 to a maximum at y = ± h/2. In a crossed circular polariscope the fringes in such a beam 

can then be ordered sequentially as N = 0, 1, 2, 3, .... start from the neutral axis. This 

information can be used to plot a straight line of y vs N and its slope 
𝑦

𝑁
 can be used in Eq. 

(4.19) for the calculation of 𝑓𝜎  . 
2) The fringe order also can be determined experimentally. Slowly change the load that applies 

to the beam. The colored isochromatic fringes will move when the load is changing, but a 

dark fringe at the center of the beam that coincides with the x-axis will not move. Also the 

free corner areas of the beam will always in dark. These are the zero stress areas that the 

fringe order N=0. Watch the color sequence of the colored isochromatic fringes from the 

center of the beam to the top and bottom edges of the beam, the color sequence is yellow-red-

green-yellow-red-green…. These are the fringe order increasing directions. Vice versa the 

color sequence of the colored ischromatic fringes is green-red-yellow-green-red-yellow…, it 

is the decreasing direction of the fringe order. Therefore, the highest fringe order of the 

isochromatic fringes is always at 𝑦 = ±
ℎ

2
 ,the top and bottom edge of the beam.  

 

4.4.3 Determination of the material stress fringe value fσ. 

1. Put a filter in front of the camcorder to change to mono-color fringes. The colored 

isochromatic fringes will change to a much sharper dark fringes.  
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2. Increase the load slowly until the Nth order isochromatic fringe just shows at the top edge of 

the beam.                                                                                                                                              

3. Record the load from the strain indicator display.                                                                                  

4. fσ can be determined by the following equation: 

 

 𝑓𝜎 =
3𝑃(𝐿2 − 𝐿1)

2𝑁ℎ2
 (4.20) 

 

where 

 

P: The load applied on the beam. 

N: The fringe order at the bottom edge of the beam. 

h: The height of the beam. 

L1: The distance between two loading point. 

L2: The distance between two supports of the beam. 

                                                      

5. Run the experiment three times.                                                                                     

6. Use the digital camcorder to take color and black and white images pictures and save into the 

memory stick.                    

4.5 Requirement: 

 

1. Plot y vs N relation and fit it with a straight line. Use the slope y/N for the calculation of 

 
2. Find out the uncertainty of the experimental results, and show an uncertainty tree. 

 

4.6 Part 2. Determination of the fiber stresses along the top and bottom edges of 

a beam subjected to three-point bending. 

In this experiment, the beam is subjected to a central load P and supported symmetrically by the 

two supports spaced l1
 
apart (see Figure. 4.7b). The magnitude of bending moment at each section 

within 𝑙1is 

 

 𝑀(𝑥) =
𝑃

2
(

𝑙1

2
− |𝑥|) (4.21) 

 

The normal stress at the outermost fiber (i.e. 𝑦 = ±
ℎ

2
) is again the only stress. Thus,  

 

 
𝜎1 (𝑥, ±

ℎ

2
) = 𝜎𝑥𝑥 (𝑥, ±

ℎ

2
) =

𝑀(𝑥) (±
ℎ
2)

𝐼
=

𝑁 (𝑥, ±
ℎ
2) 𝑓𝜎

𝐷
 

(4.22) 
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Using the material stress fringe value, 𝑓𝜎, calculated from the previous experiment, one can 

calculate the fiber stress 𝜎𝑥𝑥(𝑦 = ±
ℎ

2
) at various cross-sections. 

 

4.7 Testing procedure: 

1. Change the upper loading fixture for three-point bending. 

2. Apply some load on the beam and adjust the locations of the fixtures to obtain a symmetric 

isochromatic fringe pattern. 

3. Using white light source with dark background, the four free corners of the beam must be 

dark because of the zero stress. Start from these corners using the color sequence of the 

colored isochromatic fringe to determine the fringe orders on the top and bottom edges of the 

beam. The highest order fringe will locate at the middle of the bottom edge. 

4. Place the filter at the front of the camera the color isochromatic fringe change to dark and 

sharpen fringes. Apply a load to obtain a clear fringe pattern. Record the load from the strain 

indicator display. 

5. Find out the fringe order of the isochromatic fringes and the fringe locations along the top 

and the bottom edges of the beam. 

6. Run the experiment three times. 

7. Use the camera to take the isochromatic fringe pattern images.       

 

4.8 Requirement: 

1. Compare the two different calculated values of the material stress fringe value, 𝑓𝜎 with the 

known value of 40 lbf/in. 

2. Plot the experimental and theoretical values of xx vs x for (y = ± h/2), compare the result 

with that of the experiment of Three-Point Bending using photoelasticity model. Explain 

the difference, if any, between the two results. 
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5 LAB 5: SHADOW MOIRÉ METHOD FOR DEFLECTION 

MEASUREMENT, SHAPE MEASUREMENT, AND OPTICAL 

METROLOGY 

 

5.1 Objective 

Using moiré fringe for metrological studies is a powerful tool utilized in both academic institutions 

and industry. It is a powerful tool that gives rise to full-field information. Unlike photoelasticity 

where a birefringent material must be employed, the moiré technique can be applied to almost any 

engineering material with deformation ranging from elastic, viscoelastic to plastic. The purpose of 

this experiment is to expose students to this powerful modern tool. Due to the time limitation, only 

shadow moiré methods will be introduced. 

 

5.2 Equipment 

1). Moiré grating: 20 lines/inch for shadow moiré. 

2). Cylindrical specimen. 

3). Mannequin head. 

4). Light source. 

5). DSLR Camera. 

 

5.3 Background Knowledge 

5.3.1 Shadow Moiré Method 

Shadow moiré is for measuring out-of-plane deformation, as well. Instead of two, only a single 

grating is used. The grating’s shadow under illumination acts as the specimen grating. A general 

optical arrangement is as shown in Figure. 5.1.    
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Figure. 5.1 Shadow-moiré method with point illumination and point receiving 

 

When a specimen is placed behind the moiré grating and illuminated the distance w from the 

specimen to the grating can be calculated using the following equation: 

 

 𝑤 =
𝑁𝑝

𝑡𝑎𝑛 𝛼 + 𝑡𝑎𝑛 𝛽
 (5.1) 

 

where N is the fringe order; p is the grating pitch,  and  are the illuminating and receiving angles 

from the normal to the grating plane. In the special case where both the light source and recording 

camera are at infinity and =0, the above equation is reduced to 

 

 𝑤 =
𝑁𝑝

𝑡𝑎𝑛 𝛼
 (5.2) 

 

And this is the equation to be used in this experiment. A more detailed description of the shadow 

moiré method can be provided in the form of a published chapter on the topic, should you want it. 
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5.4 Experimental Procedures 

 

5.4.1 Testing Procedure: 

1) Measure the diameter of the cylinder. 

2) Pointing the optical axis of the recording camcorder perpendicular towards the grating 

plane. 

3) Place the cylinder in slight contact with the grating lines. 

4) Adjust the projection light such that its optical axis is pointing directly towards the center 

of the specimen. 

5) Measure the angle between the optical axes of the camcorder and the projecting light. 

6) Record the moiré pattern thus obtained using the camera. 

7) Replace the cylinder with the mannequin head. 

8) Record the moiré pattern thus obtained using the camera. 

 

5.4.2 Analysis Procedure: 

1) Using Eq. (5.2) calculate the shape of the specimens.  

2) Compute the grating constant p using the knowledge that the moiré grating is 20 lines/in. 

3) Order the moiré fringe orders as follows: N=0 for the first fringe at the center point of the 

specimen; the next one N=1, and then N=2, and so on. 

4) Calculate w using the equation. 

 

5.5 Requirements: 

1) Bring a flash drive or similar storage device to bring the images collected home. 

2) Plot w as a function of position along a diametrical section for the cylindrical specimen. 

3) Compare the result with the theoretical value calculated from the diameter for the 

cylindrical specimen. 

4) Plot w as a function of position along a horizontal section that crosses the nose of the 

mannequin head. 
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6 LAB 6: DETERMINATION OF SHEAR MODULUS AND METAL 

FATIGUE 

 

6.1 Objectives 

1. Determination of material properties and observation of material response at different 

stages of loading. 

2. Familiarization with the operation of WP 500 Torsion Testing Machine. 

3. Familiarization with the operation of RBF-200 fatigue testing machine and understand 

how to determine the fatigue S-N curve. 

6.2 Equipment 

● WP 500 Torsion Tester 

● Torsion Specimen 

● Torsiometer 

● RBF-200 fatigue testing machine. 

● A steel fatigue specimen. 

6.3 Background Knowledge 
6.3.1 Determination of Shear Modulus. 

 

 
Figure 6.1: A state of pure shear deformation 

 

Consider a state of pure shear as shown in Figure. 6.1. After the distortion produced by the shearing 

stress τ, and assuming that the material obeys Hooke’s law, the shearing strain γ is proportional to 

the shearing stress τ and we can express the relation between them by the equation 

 

 

 𝛾 =
𝜏

𝐺
 (6.1) 

a b
a1 b1

45
o
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in which G is a material constant. Eq. (6.1) is analogous to Eq. (1.23), and the constant G is called 

the modulus of elasticity in shear, or sampling shear modulus. Let us consider a circular shaft fixed 

at the upper end and twisted by a couple applied to the lower end (Figure. 6.2). If the angle of twist 

is small, it may be assumed that the circular cross-sections of the shaft remain circular during the 

twist and that their diameters and the distances between them do not change. 

 

 
Figure 6.2: Shear deformation of a long circular cylinder 

 

A disc isolated from the shaft as shown in Figure. 6.2b is in the following state of strain: there is a 

rotation of its lower cross-section with respect to its top cross-section through an angle dφ, where 

φ measures the rotation of the section mn with respect to the built-in fixed end. The rectangular 

element abcd off the lateral surface of the disc takes the form shown in Figure. (6.2b). The lengths 

of the sides remain essentially the same and only the angles at the corners change. The element is 

in a state of pure shear and the magnitude of the shearing strain γ is found from the small triangle 

cac’: 

 

 𝛾 =
𝑐′𝑐

𝑎𝑐′
 (6.2) 

 

Since c’c is the small arc of radius 
𝑑

2
 corresponding to the difference dφ in the angle of rotation of 

the two adjacent cross-sections, 𝑐′𝑐 = (
𝑑

2
) 𝑑𝜙, we obtain 

 

 𝛾 =
1

2

𝑑𝜙

𝑑𝑥
𝑑 (6.3) 
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For a shaft twisted by a torque at the end, the angle of twist is proportional to the length and 
𝑑𝜙

𝑑𝑥
 is 

constant. This represents the angle of twist per unit length of the shaft and is denoted by θ. Thus, 

from Eq. (6.3), 

 

 𝛾 =
1

2
𝜃𝑑 (6.4) 

 

The shearing stresses which act on the sides of the element and produce the above shear have the 

directions as shown. The magnitude of which, from Eq. (6.1), is 

 

 𝜏 =
1

2
𝐺𝜃𝑑 (6.5) 

 

Thus, the state of stress of an element at the surface of the shaft is specified completely. For an 

element within, the shaft it is assumed the circular boundaries of the cross sections of the shaft 

remain plane and rotate as if absolutely rigid, for instance, every diameter of the cross-section 

remains straight and rotates through the same angle. Tests of circular shafts show that the theory 

developed on this assumption is in very good agreement with experimental results. This being the 

case, the discussion for the element abcd at the surface of the shaft (Figure. 6.2b) also holds for a 

similar element on the surface of an inner cylinder, whose radium replaces 
𝑑

2
 (Figure. 6.2c). The 

thickness, dr, of the element in the radial direction is considered as very small. Such elements are 

then also in a state of pure shear and the shearing stress on their sides is  

 

 𝜏 = 𝐺𝑟𝜃 (6.6) 

 

This states that the shearing stress varies directly as the distance r from the axis of the shaft. As in 

Figure. 6.3 which depicts this stress distribution. The maximum stress occurs in the surface layer 

of the shaft.  

 

 
Figure 6.3: Shear stress distribution in a sectional plane 

 

We seek now the relationship between the applied twisting couple Mt and the stress produced. 

From the equilibrium of the portion of the shaft between the bottom and the cross section mn 

o
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(Figure. 6.2a), we conclude that the shearing stresses distributed over the cross-section are 

statically equivalent to a couple equal and opposite to the torque Mt. For each element of area dA 

(Figure. 6.2c) the shearing force is 𝜏𝑑𝐴. The moment of this force about the axis of the shaft is: 

 

 (𝜏𝑑𝐴)𝑟 = 𝐺𝜃𝑟2𝑑𝐴 (6.7) 

 

from Eq. 6.6. The torque M is the summation, taken over the entire cross sectional area, of these 

moments,  

 

 𝑀𝑡 = ∫ 𝐺𝜃𝑟2𝑑𝐴
𝐴

= 𝐺𝜃 ∫𝑟2𝑑𝐴
𝐴

= 𝐺𝜃𝐼𝑝 (6.8) 

 

where 𝐼𝑝 is the polar moment of inertia of the circular cross-section. For a circle of diameter d we 

have  

 

 

 𝐼 =
𝜋𝑑4

32
 (6.9) 

 

and therefore 

 

 𝑀𝑡 = 𝐺𝜃
𝜋𝑑4

32
 (6.10) 

 

and 

 

 𝜃 =
𝑀𝑡

𝐺

32

𝜋𝑑4
=

𝑀𝑡

𝐺𝐼𝑝
 (6.11) 

 

We see that θ, the angle of twist per unit length of the shaft, varies directly as the applied torque 

and inversely as the modulus of shear, G, and the fourth power of the diameter. If the shaft is of 

length L, the total angle of twist is 

 

 

 𝜙 = 𝜃𝐿 =
𝑀𝑡𝐿

𝐺𝐼𝑝
 (6.12) 
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It should be noted that experiments in torsion are commonly used for determining the shear 

modulus G for various materials. If the angle of twist produced in a given shaft by a given torque 

is measured, the magnitude of G can easily be obtained from Eq. (6.12). 

 

6.3.2 Experimentation. 

Shear modulus G can be determined from the experiment in torsion. The torque M can be read 

from the E101 torque meter and the angle of twist can be read from the Torsiometer that is installed 

on the specimen. The shear modulus G can be calculated from Eq. (6.12) as 

 

 𝐺 =
𝑀𝑡𝐿

𝜙𝐼𝑝
 (6.13) 

 

Using the notation: 

  

         Mt = the applied torque 

         L = the measurement length of the torsiometer 

          Φ = the angle of twist read from torsiometer (in radians) 

          𝐼𝑝 = polar moment of inertia. 

 

As before, the torque is to be applied in steps and a curve of (MtL) vs (φIp) is to be plotted. 

Theoretically, it should be a straight line and its slope is the shear modulus G. The torque is kept 

relatively small and must be read at every step. Two kinds of specimens are to be tested: carbon 

steel and aluminum specimens 

 

6.4 Experimental Procedure  

1) Measure the diameter (d) of the specimens. 

2) Remove the two clamping screws (Figure. 6.4 Pos 1) until the loading slot is free. Set the 

scale (Figure. 6.4 Pos 2) to zero, so that the holes (Figure. 6.4 Pos 3) are aligned. 

3) Take a torsion specimen (Figure. 6.4 Pos 4) and put it through the holes in the scale disc. Put 

the specimen exactly to the ground of the slot (Figure. 6.4 Pos 5). 

4) Insert the specimen together with the torsiometer into the torsion tester. 

5) Adjust the scale to zero and tighten the clamping screws (Figure. 6.4 Pos 1). Take care that 

the zero setting of the scale will not be readjusted. 

6) Distance L of the two screws is 50mm. 

7) Insert sockets (Figure. 6.7.1) into the square connections. 

8) Release clamping lever (Figure. 6.7.2) on torque measurement unit (Figure. 6.7.3) and push it 

backwards. 

9) Place the specimen (Figure. 6.7.4) with the torsiometer in the sockets and slide the torque 

measurement unit forwards again. Make sure that the moving driver (Figure. 6.7.5) is located 

in the center of its range of movement. 

10) Fix the torque measurement unit in place with clamping levers. 



LAB 6: Determination of Shear Modulus and Metal Fatigue 

53 
 

11) Carefully pre-tension the specimen until there is no slack and the torque display begins to 

move. 

12) On the torque display unit press and hold down the ▼ key and then press P. The display 

returns to zero. 

13) Set the dial gauge (Figure. 6.7.10) on the compensation device to zero by rotating the scale 

ring. 

14) Set the torque display to zero again. 

15) Now the experiment is ready to run. 

16) Turn the hand wheel (Figure. 6.7.8) to load the specimen, display in Nm on the digital 

display of the torque display unit. 

17) Read the torque angle on the scale of the torsiometer (Figure. 6.5), the angel can be read to 

0.1 degree accuracy using Nonius scale (Figure. 6.6). 

18) Each 0.5 degree turn wheel (Figure. 6.7.11) until the dial gauge (Figure. 6.7.10) zero again, 

takes a reading of the torque until 2.5 degree, three trials for each specimen, aluminum, and 

steel. 

 

 
Figure 6.4: Torsion machine 
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Figure 6.5: WP 500.90 Torsiometer 

 

 
Figure 6.6: Example of a Nonius scale 
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Figure 6.7:  WP 500 Torsion Tester 

 

6.5 Requirement 

1.  Determine the shear modulus G of the testing materials using the linear regression 

method. 

2. Find out the uncertainties of the experimental results and show an uncertainty tree. 

 

6.6 Fatigue and determination of S-N curve 

6.6.1 Background Knowledge 

 

Machine parts are frequently subjected to varying stresses and it is important to know the strength 

of materials under such conditions. It is well known that materials fail under repeated loading and 

unloading, or under reversal of stress, at stresses smaller than the ultimate strength of the material 

under static loads. The magnitude of the stress required to produce failure decreases as the number 

of cycles of stress increases. This phenomenon of the decreased resistance of a material to repeated 

stresses is called fatigue, and the testing of a material by the application of such stresses is called 

an endurance test. 

 

If 𝜎max and 𝜎min are the maximum and minimum values of the repeated stress, then the algebraic 

difference 
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 Δ𝜎 = 𝜎max − 𝜎min (6.14) 

 

is called the range of stress. The cycle is completely defined if the range and the maximum stress 

are given. The average stress is 

 

 𝜎𝑚 =
1

2
(𝜎max + 𝜎𝑚𝑖𝑛) (6.15) 

 

In the particular case of reversed stress 𝜎max = −𝜎min, 𝜎maxΔ𝜎 = 2𝜎max and 𝜎min = 0. Any cycle 

of varying stresses can be obtained by superposing a cycle of reversed stress on a steady average 

stress. The maximum and minimum values of the varying stress are then given by the following 

formulas: 

 

 𝜎𝑚𝑎𝑥 = 𝜎𝑚 +
Δ𝜎

2
; 𝜎𝑚𝑖𝑛 = 𝜎𝑚 −

Δ𝜎

2
 (6.16) 

 

There are various methods of applying the load during an endurance test. The specimen can be 

subjected to direct tension and compression, to bending, to torsion, or to some combination of 

these. The simplest way is by reversed bending. A common form of a fatigue test bar is a cantilever 

as shown in Figure. 6.8. The cross section of the specimen is varied along the length in such a 

manner that the maximum stress occurs at cross-section mn. The effect of stress concentrations is 

eliminated by using a large fillet radius and by increasing the diameter of the bar near the fillet. 

The load P is always downward and the specimen rotates at constant speed. The stress therefore 

changes sign every half revolution, and the number of cycles of stress is equal to the number of 

revolutions of the machine. The stress is a completely reversed stress, the average stress being zero 

and the range of stress being twice the 𝜎𝑚𝑎𝑥. 

 

 
Figure 6.8: Specimen for material fatigue experiment 
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By taking several specimens and testing them at various loads P, a curve such as shown in 

Figure.6.9 can be obtained. 

 

 
Figure 6.9: Typical material fatigue S-N testing curve 

 

Here, 𝜎max  is represented as a function of the number of cycles n required to produce a 

fracture. The curve shown was obtained with mild steel. At the beginning 𝜎max decreases rapidly 

as n increases. After about 4 million cycles, there is no longer any appreciable change in 𝜎max, and 

the curve approaches asymptotically to the horizontal line 𝜎max = 27000𝑙𝑏 𝑝𝑒𝑟 𝑠𝑞. −𝑖𝑛. The 

stress corresponding to such an asymptote is called the endurance limit of the material. It is now 

the usual practice in endurance tests to plot 𝜎max against log 𝑛. In this manner, the magnitude of 

the endurance limit is disclosed by a definitive discontinuity in the curve. An example of such a 

curve is shown in Figure. 6.10. 

 
Figure 6.10: A typical S-N curve with different scale 

 

6.7 Experimental Procedure (RBF-200 fatigue testing machine)  

The RBF-200 fatigue testing machine, as shown in Figure. 6.11, is a compact, bench mounted 

machine designed to apply reversed bending loads to unthreaded, straight shank specimen bars. 

Included is a cycle counter (99,999,900 maximum counts), an adjustable speed spindle (500 to 

10,000 cpm), and a calibrated beam and poise system which can apply an infinitely adjustable 
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moment of up to 200 inch-pounds to the cantilevered end of the specimen bar. Collet size is ½ 

inch. 

● Motor and Spindle 

The motor is a ½ HP, 115volt, universal type which is powered by a variable transformer to control 

the speed from 500 to 10,000 RMP. The motor drives a spindle assembly through a flexible 

coupling. 

CAUTION: The motor must not be operated at a speed over 10,000 RMP! 

The spindle assembly consists of the shaft, bearings, and oil filled housing. A sight gage is 

provided on the back of the machine for maintaining the proper oil level in spindle. 

● Bending Moment Loading Beam 

The bending moment loading beam is numbered from 0 to 200 inch-pounds at successive 10 inch-

pound increments. The interval between each 10 inch-pound increment is marked with successive 

one inch-pound divisions. A locking screw is provided in the poise weight to secure it at the desired 

bending moment setting. 

● Cutoff Switch 

A snap action reset switch is furnished to automatically shut off the machine at specimen failure. 

It is located under the end of the calibrated beam in such a manner that when the beam drops at 

specimen failure, the nuts on the screw are adjusted to stop the beam from damaging the switch 

after actuation. The switch must be reset with the tab at the outside end of the machine before 

testing can be resumed. 

● Cycle Counter 

The six-digit resettable counter (99,999,900 maximum count) is actuated by a switch which is 

directly driven by the spindle through a 100:1 ratio. 

 

 

6.8 Testing Procedure 

1. Loosen the lock screw fixing the poise weight to the calibrated beam and move the weight to 

the zero position at the extreme left end of the beam (see Figure. 6.11.)                                             

2. Loosen the nuts holding the safety bar at the end of the load arm and swing the bar free of the 

load arm.                                                                                                                                          

3. Pull the safety guard straight upward free the phenolic block base. The guard is retained only 

by a friction fit.                                                                                                                                

4. Swing the load arm up and to the right so that a specimen bar may be inserted into the drive 

spindle collet. Position the load arm to prevent contact with the free end of the specimen. 

5. Before inserting the specimen into the drive spindle collet, wipe the specimen clean and 

carefully check for any burrs, flats, or ridges. Stone away any discontinuities that might 

interfere with the even distribution of the collets gripping action. Also wipe clean the 

specimen bores in both collets.                                                                                                                            

6. Specimen bars should be pushed into the collets until either the specimen bottoms or the 

front face of the collets lines up with the end of the tangent on the specimen.                                             

7. Tighten the drive spindle collet onto the specimen. The collet must be tightened sufficiently 

to prevent any relative movement between the collet and specimen which could cause 

fretting corrosion. 
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8. Manually rotate the assembly and check for run-out. The run-out should not exceed .001 inch 

at the drive spindle collet and .003 inch at the free end of the specimen.                                         

9. If excessive run-out is present, loosen the collet sufficiently. Tighten the collet and recheck 

the run-out. 

10.  Insert the free end of the specimen into the load arm collet observing the same procedures 

and precautions noted above for the drive spindle. 

11. In wrenching tight the load arm collet, particular care should be taken to ensure that pure 

torsional wrenching is used and that no bending forces are imparted to the specimen.              

12. Again, rotate the assembly and check the final run-out on the right-hand end of the load arm 

which should not exceed .006 inch. If excessive run-out is present, repeat the procedure 

described in 8. It may be necessary to tap the specimen free from the collet. Tighten the 

collet and recheck the run-out.                                                                                                                                           

13. Set the counter to “zero. 

14. Turn the speed control knob counterclockwise to the zero position. Back off the cutoff switch 

from tripping by the movement of the load arm as it comes up to speed.                                        

15. Push down the cutoff switch reset tab extending through the right-hand end of the machine 

base. 

16. With the fingers of the right hand, grasp the load arm bearing housing to damp out any 

resonances and slowly rotate the speed control knob clockwise to bring the machine up to the 

desired speed. 

17. Speed may be readily determined from a counter/timer relationship. Two zeroes must be 

added to the indicated reading of the counter for the actual spindle count.                                     

18. When the spindle speed has been roughly adjusted to its desired rate, slowly move the poise 

weight along the calibrated beam to the required bending moment setting.                                 

19. While adjusting the position of the poise weight, watch for interference between the cutoff 

switch adjusting screw and the guard. 

20. Fix the weight to the beam by tightening the lock screw and quickly reset the counter to zero 

without stopping the machine.  

21. Machine speed should be rechecked to determine if loading the specimen caused it to slow 

down. 

22. Finally, adjust the cutoff switch actuation by slowly turning the adjusting screw clockwise 

until the switch actuates and the power is shut off. Immediately, and in the following 

sequence, back off the adjusting screw ½ turn, and push down the cutoff switch reset tab. 

This should be done as quickly as possible to minimize the loss of spindle speed.                                                        

 

The intent in this procedure as well as moving the weight to the desired moment setting after the 

machine has been brought up to speed is to minimize any over load condition on the specimen if 

the machine passes through a critical (resonant) speed. In addition, it is important to select a non-

resonant test speed and to hold the load bearing housing with the fingers during any speed changes 

to dampen vibration when passing through critical speeds.                                                

The applicable inch-pound moment setting for the poise weight is generally determined on the 

basis of some desired bending stress level in the specimen. This moment may be determined from 

the equation: 
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 𝑀 = 3.1416 ×
𝜎𝐷3

32
= 0.0982𝜎𝐷3 (6.17) 

 

Where 

M = Setting for poise weight in inch-pounds 

= Desired bending stress level in specimen at minimum cross section in pounds per square inch 

(PSI). 

D = Diameter of specimen at minimum cross section in inches 

 

6.9 Requirement 

1). Familiarization with the operation of the fatigue testing machine.                                               2). 

Familiarization with how to determine the S-N curve of the material. 

 

 
                                    Figure 6.11: Torsional Fatigue Testing Machine
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7 LAB 7: STRUCTURAL INSTABILITY 

 

7.1 Purpose of Experiment 

1. Through column buckling test to understand the phenomenon of structural instability. 

 

7.2 Equipment 

● Strut apparatus. 

● Three steel specimens for buckling test. 

 

7.3 Background knowledge 

7.3.1 Determination of load-deflection curves and critical loads for buckling of straight 

columns with various end conditions. 

 

7.3.1.1 Struts Subject To Axial Load 

When the length of a strut is very large in comparison to its sectional dimensions and it is loaded 

in compression failure will occur not due to the compressive stress rather, failure will occur due to 

bending since no strut is truly straight, no load truly axial, and no material truly homogeneous. 

Such bending under axial load is called buckling and the load which produces it is referred to as 

the Buckling, Crippling or Critical Load. When such failure occurs, the strut remains in 

equilibrium in the bent position, as shown in Figure. 7.1. 

 

 
Figure. 7.1: Strut under compressive load 
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The critical loads can be derived as follows. They are referred to as Euler loads in honor of the 

Swiss mathematician. Assuming that direct compressive stress is negligible the ends are pin-

jointed (i.e. free to change their slope): 

 

 𝑀 = 𝐸𝐼
𝑑2𝑦

𝑑𝑥2
= −𝑃𝑦 (7.1) 

 

or 

 

 
𝑑2𝑦

𝑑𝑥2
+

𝑃

𝐸𝐼
𝑦 = 0 (7.2) 

 

or 

 

 
𝑑2𝑦

𝑑𝑥2
+ 𝑘2𝑦 = 0 (7.3) 

 

where 

 

 𝑘2 =
𝑃

𝐸𝐼
 (7.4) 

 

or 

 

 𝑃 = 𝑘2𝐸𝐼 (7.5) 

 

where I is moment of inertia. It can be shown that solution for this differential equation is 

 

 𝑦 = 𝐴𝑐𝑜𝑠(𝑘𝑥) + 𝐵𝑠𝑖𝑛(𝑘𝑥) (7.6) 

 

where A and B are constants. From the boundary condition that y = 0 when x = 0, we obtain  A = 

0. From the boundary condition that y = 0 when X = L, we obtain sin kL = 0. By taking the least 

positive value, we have  

 

 𝑘𝐿 = 𝑛𝜋, 𝑛 = 0, 1, 2, … (7.7) 

 

when n is 1, thus: 
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 𝑘2 =
𝜋2

𝐿2
 (7.8) 

 

or 

 

 𝑃 =
𝜋2

𝐿2
𝐸𝐼 (7.9) 

 

From the definition of 𝑘2, P is calculated, and it is the critical load for the column under failure by 

buckling. A safe load shall be no more than this value divided by a suitable safety factor. If one 

end is fixed so that a change in slope at this end is prevented, and there is no lateral restraint at the 

other end (Figure. 7.3), bending moment M must be introduced to maintain equilibrium. Hence, 

the strut is now equivalent to half a strut of length 2L loaded as in Figure. 7.2.,  

 

 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐿𝑜𝑎𝑑 =
𝜋2

(2𝐿)2
𝐸𝐼 (7.10) 

 

Or 

 

 𝑃 =
1

4

𝜋2𝐸𝐼

𝐿2
 (7.11) 

 

If both ends are built in as shown in Figure. 7.3, there are two points of contraflexure c, c, at 
𝐿

4
 from 

each end.

 
Figure 7.2 

 
Figure 7.3 

 
Figure 7.4

P

M

L

P

4

2
L

L

L

4

P
M

P
M

C

C

P

F

P
M

L

X

Y

P

M

L

P

4

2
L

L

L

4

P
M

P
M

C

C

P

F

P
M

L

X

Y

P

M

L

P

4

2
L

L

L

4

P
M

P
M

C

C

P

F

P
M

L

X

Y



LAB 7: Structural Instability 

64 
 

         

The piece of strut between them, of length 
𝐿

2
, is similar in shape to the pin-jointed strut of Figure. 

7.1 since the bending moment at the Point Cs is zero. 

 

Hence for this case, 

 

 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐿𝑜𝑎𝑑 =
𝜋2

(
𝐿
2)

2 𝐸𝐼 (7.12) 

 

or 

 

 𝑃 =
4𝜋2𝐸𝐼

𝐿2
 (7.13) 

 

If the free end of the strut in Figure. 7.2 is prevented from moving laterally by a horizontal force 

F (Figure. 7.4), for any point at x from the fixed end we have 

 

 𝑀𝑥 = 𝐸𝐼
𝑑2𝑦

𝑑𝑥2
= −𝑃𝑦 + 𝐹(𝐿 − 𝑥) (7.14) 

 

or 

 

 
𝑑2𝑦

𝑑𝑥2
+

𝑃

𝐸𝐼
𝑦 =

𝐹

𝐸𝐼
(𝐿 − 𝑥) (7.15) 

 

or 

 

 
𝑑2𝑦

𝑑𝑥2
+ 𝑘2𝑦 = 𝑅(𝐿 − 𝑥) (7.16) 

 

where 

 

 𝑅 =
𝐹

𝐸𝐼
 (7.17) 

 

and 
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 𝑘2 =
𝑃

𝐸𝐼
 (7.18) 

 

It can be shown that the general solution to this differential equation is 

 

 𝑦 = 𝐴𝑐𝑜𝑠(𝑘𝑥) + 𝐵𝑠𝑖𝑛(𝑘𝑥) +
𝐹

𝑃
(𝐿 − 𝑥) (7.19) 

 

where A and B are constants. From the boundary condition that y = 0 when x = 0, and 
𝑑𝑦

𝑑𝑥
= 0 

2where x = L, the constants can be determined as 𝐴 = −
𝐹𝐿

𝑃
 , and 𝐵 =

𝐹

𝑘𝑃
 , respectively. From the 

boundary condition y = 0 when x = L we have 

 

 𝐵𝑠𝑖𝑛𝑘𝐿 = −𝐴𝑐𝑜𝑠𝑘𝐿 (7.20) 

 

or                  

 

 tan 𝑘𝐿 = −
𝐴

𝐵
 (7.21) 

 

or 

 

 𝑘𝐿 = tan−1 (−
𝐴

𝐵
) (7.22) 

 

or 

 

 𝑘𝐿 = tan−1(
𝐹𝐿

𝑃
∗

𝑘𝑃

𝐹
)  (7.23) 

 

or 

 

 𝑘𝐿 = tan−1(𝑘𝐿) (7.24) 

 

Thus, 

 

 𝑘𝐿 = 4.49 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 (7.25) 

 

and 
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 𝑘2 =
20.2

𝐿2
=

𝑃

𝐸𝐼
 (7.26) 

 

therefore 

 

 𝐶𝑟𝑖𝑡𝑖𝑎𝑙 𝐿𝑜𝑎𝑑 = 20.2
𝐸𝐼

𝐿2
. (7.27) 

 

Since 2𝜋2 = 19.75, it may be assumed that the critical load is given approximately by 

 

 𝑃 = 2𝜋2
𝐸𝐼

𝐿2
 (7.28) 

 

7.3.2 Buckling test of straight columns. 

 

Elastic instability, or buckling, is a very important part of solid mechanics. This experiment is 

designed to give students a physical feeling of the nature of buckling by measuring the critical 

loads for straight column with various end conditions and compare results to those calculated 

theoretically according to the formula outlined in the previous section.  

 

 
Figure 7.5: Buckling mode of a slender column under compression with different end conditions 

 

P

P

P P

(a) (b)

(c) (d)

c = 2.47 c = 9.87

c = 20.2 c = 39.5

L L

L L



LAB 7: Structural Instability 

67 
 

Critical loads for:   

 

a) clamped-free columns 

b) hinged-hinged columns 

c) clamped-hinged columns 

d) clamped-clamped columns 

 

In each case the constant C shown in Figure. 7.5 is to be inserted in the formula: 

 

 𝑃𝑐𝑟𝑖𝑡 = 𝐶
𝐸𝐼

𝐿2
 (7.29) 

 

Three sets of conditions are tested: 

 

a) hinged-hinged 

b) hinged-clamped 

c) clamped-clamped 

 

A set of steel specimens with different length and same width and thickness are provided to fit for 

different end conditions but the testing length L should be the same. While the specimen is being 

loaded, the load can be read from a load indicator through a load cell. The deflection of the column 

is measured by a LVDT that connected to a displacement indicator to display the deflections 

(shown in Figure. 7.6). When the load is applied to the column, the deflection of the column will 

first increase slowly along with the load. When the load gets to a certain level, the deflection will 

suddenly increase much faster and the load will remain mostly constant. The maximum load is the 

critical load. The load is to be applied in small increments, especially near the critical load. 

 

7.4 Experimental Procedure: WP 120 Vertical Buckling Test Device 

There are three steel specimens. One is for hinged – hinged end condition. One is for clamped-

clamped end condition and one is for hinged – clamped end condition. The Buckling Test Device 

is shown in Figure. 7.6. The length L of the specimens are all the same. The top and bottom 

specimen holders are shown in Figure. 7.9 and Figure. 7.10 for different end condition specimen. 

A hydraulic force measuring device for force measurement showed in  (Figure. 7.7). Find out the 

critical load for each end condition. 

 

!Caution!: Never deflect more than max. 6 mm, since there is a risk or plastic deformation and 

damage to the specimen. 

 

1) Hinged-hinged end condition. Insert thrust piece with V notch into bottom specimen holder. 

Insert long thrust piece with V notch into top specimen holder (Figure. 7.11). Adjust the load 

crossbar high and insert specimen with edges in the V notch. 

2) Align the measuring gauge to the middle of the specimen. The measuring gauge must be set 

in the right direction of buckling. 
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3) Slowly subject the specimen to load using the load nut (Figure. 7.12). Read the deflection 

from the measuring gauge. Read the load from the force gauge. Read and record the 

deflection and the load every 0.25 mm. up to 1mm. Above 1 mm deflection, record the load 

and force every 0.5 mm. 

4) The test can be concluded when the force does not change, despite an increasing load. 

5) Repeat the test with the opposite buckling direction. To do this, set the buckling direction by 

initially guiding the specimen by hand. 

6) For clamped-hinged end condition (Figure. 7.13) and clamped-clamped end condition 

(Figure. 7.14) do the same procedures 2-5. 

 

7.5 Requirement 

1. Plot graphs of load vs. deflection and extrapolate the curve to obtain the experimental 

critical load 

2. Compare the experimental critical load with those predicted by the Euler equations. 

Determine the relationship between the experimental critical loads for the various end 

conditions. 

3. A table to show the comparison of the experimental data and the theoretical data is 

required. 

4. Find out the uncertainties of the experimental results and show an uncertainty tree. 
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Figure 7.6: WP 120 Buckling Test Device
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Figure 7.7: Hydraulic Force Measuring 

Device 

 
Figure 7.8: Deformation Measuring Device

 
Figure 7.9 Bottom Specimen Holder 

 
Figure 7.10: Top Specimen Holder 

 
Figure 7.11:  Hinged-hinged 

 

 
Figure 7.12: Loading parts 
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Figure 7.13: Clamped-hinged 

 
Figure 7.14: Clamped-clamped
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8 LAB 8: STRAIGHTNESS MEASUREMENT OF LINEAR 

MOTION 

 

8.1 Objectives 

The objective of this metrology experiment is to learn how to use a digital indicator, a straightedge, 

and the principle of straightedge reversal to measure the straightness of a linear slide as well as the 

shape of the straightedge. 

 

8.2 Equipment 

● A digital indicator (Mitsutoyo Digimatic Indicator model 543-142) with a measuring range 

of 0-.5"/0-12.7 mm, a resolution of .00005"/0.001 mm, and an accuracy of .00015” 

● A Rectangular Straightedge 

● A linear slide (NS K Monocanier model MCM0803OH-10) with a leadscrew of 10 mm 

pitch and a differential manual drive (Klinger Model UE2.30.N) 

● A full 360o rotary stage (Newport Model RSP- 1) 

● An Allen Wrench 

 

8.3 Background Information 

Calibration of machine tools is an essential operation in the machine tool industry.  It is routinely 

performed to keep machines in their peak performance and therefore to produce quality products.  

Some important purposes of calibration can be summarized as follows: 1) error mapping of CNC 

machines for error compensation, 2) acceptance testing of newly acquired machine tools, 3) 

periodic calibration for optimized performance of machine tools, 4) troubleshooting, and 5) 

demonstration of quality to potential customers. 

 

One of the major operations of machine tool calibration is the straightness measurement of 

machine tool slideways.  Conventionally, straightness measurement has been done by using such 

instruments as dial indicators and straightedges, laser interferometers, etc.  The dial indicator and 

straightedge method is a simple and elegant method, especially when the principle of straightedge 

reversal is applied.  This experiment is designed to let you learn the principle of this method. 
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8.3.1 Straightness Measurement Method 

 

 

Figure 8.1: Geometric errors of a linear slide. 

 

Figure 8.1 shows all six geometric error components of a linear slide.  Among these error 

components, the horizontal straightness is to be measured in this experiment.  One way to measure 

the straightness of a linear slide is to use a dial indicator and a mechanical straightedge which 

serves as a reference.  Since no real straightedge is perfectly straight, errors in the shape of the 

reference artifact become mixed with the slide errors one is trying to measure.  This problem is 

readily solved by a simple and elegant technique known as straightedge reversal.  Figure 8.2 

illustrates the principle. 

 

 
Figure 8.2: Principle of straightedge reversal method. 
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Figure 8.3: Definition of straightness error. 

 

Straightedge reversal consists of two measurement setups. The straightedge is first supported on 

its side with the gauging surface in a vertical plane, in what is arbitrarily called the "normal" 

orientation.  A series of data is taken at a chosen number of carriage positions, which can be 

represented as 

 

 𝑁(𝑥) = 𝑀(𝑥) − 𝑆(𝑥) (8.1) 

 

where M(x) is the error of the machine and S(x) is the shape of the straightedge.  In the second 

setup, the straightedge is rotated 180o about its long axis, and the dial indicator is also rotated so 

as to sample the reoriented gauging surface.  This is called the "reverse" orientation.  With this 

setup, a new set of displacements 

 

 𝑅(𝑥) = −𝑀(𝑥) − 𝑆(𝑥) (8.2) 

 

 is obtained.  From the results of these measurements, both the slide horizontal straightness and 

the shape of the straightedge can be determined as 

 

 𝑀(𝑥) =
[𝑁(𝑥) − 𝑅(𝑥)]

2
, 𝑆(𝑥) = −

[𝑁(𝑥) + 𝑅(𝑥)]

2
 (8.3) 

 

 respectively. 

 

Figure 8.3 shows a typical measured result of straightness of motion.  It can be considered as 

consisting of a straightness of motion error es (the minimum distance of two parallel lines enclosing 

the curve) and an error of direction ed (the slope of these lines). ed could be caused by misalignment 

of the straightedge and the motion direction.  It cannot be accurately determined from this 

experiment. Therefore it is eliminated from consideration in this experiment through linear 

regression analysis. es is the error to be measured. 
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8.4 Experimental Procedure 

The experiment can be done following these steps: 

1. Make sure that the measuring tip of the digital indicator is roughly aligned with the slide axis, 

the digital indicator is on the right hand side, and the reading of the counter on the slide drive 

is 9990. 

2. Press the On/Off button to power on the digital indicator. 

3. Lightly clamp the straightedge in the fixture as shown in Figure 8.4. 

4. Rotate the rotary stage so that the measuring tip of the digital indicator is vertically against 

the gauging surface of the straightedge and the arrows on the rotary stage are aligned.  Lock 

the rotary stage by tightening the screw on top of the drive of the rotary stage. 

5. Press the Reset button twice to reset the digital indicator to zero.  If the display is upside-

down, rotate the upper part of the indicator until the display is correctly aligned. 

6. Sample the gauging surface at 26 slide positions starting from counter number 0 to 25 (the 

counter number increases by 1 per revolution of the drive, which corresponds to slide position 

change of 10 mm) and record the readings of the digital indicator as N(x) in your logbook.  

(Use a table similar to the data sheet shown in Figure 8.6.) 

7. Unlock the rotary screw.  Rotate the rotary stage to align the digital indicator roughly with the 

axis of the slide.  Move the slide back until the counter number is 9990 again. 

8. Rotate the straightedge for 180o about its long axis and lightly clamp it in the fixtures on the 

other side of the slide (see Figure 8.5) so as to face the same gauging surface of the 

straightedge to the digital indicator. 

9. Repeat steps 4 - 7 and record sampled data as R(x) in the data sheet. 

10. Repeat steps 3 - 9 using the opposite gauging surface of the straightedge. Record the 

sampled data in the corresponding rows of the data sheet. 

11. From the above measurements, calculate the horizontal straightness of the slide, M(x) = 

[N(x) - R(x)]/2, and the shape of the straightedge, S(x) = - [N(x) + R(x)]/2. Use linear 

regression analysis to remove the zeroth and first order terms.  Plot the straightness of the 

slide M(x) and the shape of the straightedge S(x) for both gauging surfaces (plot M(x) and 

S(x) separately).  For the straightness of the slide M(x), also calculate the average of the two 

curves and plot it in the same plot. 

12. Analyze and discuss the measured results. State your observations from the results and 

provide your comments on the measurement technique. 
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Figure 8.4: First measurement. 

 

 
Figure 8.5: Second measurement.
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Figure 8.6: Example Date Sheet. 
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9 LAB 9: DIGITAL IMAGE CORRELATION/DIGITAL SPECKLE 

PHOTOGRAPHY TECHNIQUES FOR DEFORMATION ANALYSIS 

 

9.1 Objective 

1. Familiarization with white light speckles and their use for strain measurement. 

2. Familiarization with the operation of Tinius Olsen H5K-S universal digital testing 

machine. 

3. Familiarization with the capabilities of speckle photography and Digital Image Correlation 

(DIC). 

4. Familiarization with DIC software Ncorr. 

 

9.2 Equipment 

● Light source to illuminate the specimen. 

● Computer with Matlab and C++ compiler to run Ncorr software. 

● Tinius Olsen H5K-S universal digital testing machine. 

● Specimen with white light speckles painted on one side. 

● DSLR Camera 

● Ruler for pixel length scale conversion. 

● Projection screen to provide background for photographs. 

 

9.3 Background Knowledge. 

9.3.1 Determination of tensile strain ε using the speckle method 

Experiments on the extension of bars under tensile load have shown that within certain limits, the 

elongation of the bar is proportional to the tensile force applied. For many structural materials, this 

simple linear relationship between the force and the elongation it produces was first formulated by 

the English scientist Robert Hooke in 1678 and bears his name. Using the notation: 

 

P = the force-producing an extension of the bar 

L = length of the bar 

A = the cross-sectional area of the bar 

δ = total elongation of the bar 

      E = the elastic constant of the material, called modulus of elasticity or Young’s modulus. 

 

Hooke’s law may be given by the following equation: 

 

 𝛿 =
𝑃𝐿

𝐴𝐸
. (9.1) 
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In a unit axial tension test, the stress σ in the prismatic bar is the force per unit of cross-sectional 

area, i.e.: 

 

 𝜎 =
𝑃

𝐴
.  (9.2) 

 

Meanwhile, the axial strain is the elongation per unit length, is determined by the equation 

  

 휀 =
𝛿

𝐿
. (9.3) 

 

Using equations (9.1), (9.2) and (9.3), Hooke’s law may also be written in the following form: 

 

 𝜎 = 𝐸휀. (9.4) 

 

White light speckles can be used as in-plane gages to determine the displacement and strain of the 

surface to which they are adhered to. The speckle pattern on the specimen will move with the 

specimen. Using the software Ncorr, a before and after image of the speckle pattern, the 

displacement can be determined. From the displacement, strain can be derived. The relationship 

between displacement and strain is shown: 

 

 휀𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥
. (9.5) 

 

9.4 Experimental Procedure 

9.4.1 Testing Procedure 

9.4.1.1 Procedure for painted speckles 

1. Take some time to familiarize yourself with the Tinius Olsen digital universal testing 

machine and the DSLR camera (Do not make any adjustments to the camera’s focus or 

settings unless explicitly told to by the instructors.) before running the test. 

2. Measure the width and the thickness of the specimen to find out the cross-sectional area of 

the specimens, additionally measure the initial active length of the specimen. 

3. The specimen has been placed inside the universal testing machine for you. Use the slowest 

tensile loading speed to give the specimen an initial load (about 20 lb.). After the initial 

loading, the specimen capture an image of the specimen.  

4. Set the load and extension readings on the front panel of the digital testing machine to zero. 

5. Create a folder on the Desktop of the computer using your own group name for saving your 

testing files. 

6. Load the specimen on the slow speed setting based on its extension, use small extensions 

(0.0010 – 0.0025in) as your loading steps. At each step wait for the load to settle, then take 
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readings of the extension, load, and for one of the steps capture an image using the digital 

camera. Load the specimen 10 steps from the initial point, this will result in 2 total images 

of the specimen. Take the SD card from the camera and insert it into the computer. Copy 

the photos from the SD card to the folder for your group. 

9.4.1.2 Procedure for naturally-occurring speckles 

1. Take some time to familiarize yourself with the Tinius Olsen digital universal testing 

machine and the DSLR camera (Do not make any adjustments to the camera’s focus or 

settings unless explicitly told to by the instructors.) before running the test. 

2. Measure the width and the thickness of the specimen to find out the cross-sectional area of 

the specimens, additionally measure the length of the specimen. 

3. The specimen has been placed inside the universal testing machine for you. Use the slowest 

tensile loading speed to give the specimen an initial load (about 20 lb.). After the initial 

loading, the specimen capture an image of the specimen.  

4. Set the load and extension readings on the front panel of the digital testing machine to zero. 

5. Create a folder on the Desktop of the computer using your own group name for saving your 

testing files. 

6. Load the specimen on the slow speed setting based on its extension, use small extensions 

(0.0010 – 0.0025in) as your loading steps. At each step wait for the load to settle, then take 

readings of the extension, load, and for one of the steps capture an image using the digital 

camera. Load the specimen 1 step from the initial point, this will result in 2 total images of 

the specimen. Take the SD card from the camera and insert it into the computer. Copy the 

photos from the SD card to the folder for your group. 

 

9.4.2 Analysis procedure 

 

1. Open MATLAB and open the ncorr.m file. 

2. Run the ncorr.m file. Click file and then Load Reference Image and select the initial photo 

that was captured before loading began. 

3. Click file then Load Current Image(s) then Load All and select the 3 photos that were 

captured after the specimen was loaded. 

4. Now that all of the images are loaded into Ncorr select Region of Interest(ROI) then Set 

Reference ROI followed by Draw ROI, then draw a ROI that captures as much of the 

specimen as possible (It may be best to consult with the instructor if you have a question 

about your ROI), finally click Finish. 

5. Click the Analysis tab, followed by Set DIC Parameters, change Num Threads in the 

Multithreading Options section to 1, typically the other parameters will not need to be 

adjusted, consult with the instructor before clicking Finish. 

6. Click the Analysis tab, followed by Perform DIC Analysis, then Select Region, and click 

on the ROI that you previously drew. Once the Set Seeds window opens click set seeds and 

place the seed at the center of your ROI to the best of your ability, then click Finish. 

7. The Seed Preview window will open and show you the placement of the seed on your 

reference image and all the current image, due to a relatively small extension being used 

make sure that the seed doesn’t move too much from the reference image location. Click 

Finish and then finally click Finish on the Select Region window. The DIC analysis will 

now be performed. While the DIC analysis is performed compute the conversion factor for 
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the number of pixels to inches using the initial image you captured (compute the conversion 

such that it is units of in/pixel). 

8. After the DIC analysis is completed the Displacement will be displayed. The displacements 

need to be formatted, select Format Displacements in Analysis tab. Using the previously 

calculated unit conversion convert the data from pixels to inches, all other options in the 

Format Displacements window can be left as is and click Finish.  

9. Click the Analysis tab then Calculate Strains. Typically setting the strain radius to the 

largest value will produce the best results. 

10. Save the displacement plots by selecting Plot then View Displacement Plots then click All. 

Click file on each of the windows that pops up then Save Image and finally Save Image 

With Info. 

11. Save the strain plots by selecting Plot then View Strain Plots then click All. Click file on 

each of the windows that pops up then Save Image and finally Save Image With Info. 

9.5 Requirements 

1. Bring a flash drive or similar storage device to bring the data collected home. 

2. Compare the displacement results from Ncorr with the readings from the Tinius Olsen 

H5K-S’s extension output. 

3. Use a linear regression compute the Young’s Moduli of the specimen using the loads, their 

corresponding elongation, initial active length, and cross-sectional area of the specimen. 

4. Using computed Young’s Moduli of the specimen, and the strain plots produced by Ncorr 

compute only the tensile stress experienced by the specimen. 
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10 LAB 10: PHOTOELASITICITY FOR STRESS CONCENTRATION 

ANALYSIS 

 

 
 

10.1 Objectives 

1. Familiarization with the operations of a polariscope 

2. Understanding of the elementary photoelastic method for stress measurement 

3. Observation of stress concentration due to the presence of a hole through the photoelasticity 

method  

 

10.2 Specimens and Instrumentations 

1. Polariscope 

2. HD digital camcorder and LCD TV 

3. Photoelastic plate with a circular hole at the center 

 

10.3 Background Knowledge 

10.3.1 Double Refraction and Stress Optical Law 

The method of photoelasticity is based on the principle of double refraction observed in a certain 

class of transparent materials called photoelastic or birefringent materials. This double refraction 

is a temporary phenomenon associated with the mechanical stressing of the object. When the loads 

are removed, the optical property of the material returns to normal, which means it will be optically 

isotropic. Consider a ray of light Ri entering a birefringent medium i from free space o (see Figure. 

10.1). Assuming that the object is free of stresses, one can observe the refraction of light based on 

Snell’s Law. Let Rr be the refracted ray and i and γ be angles of incidence and refraction measured 

with respect to the surface normal. The ratio 
sin 𝑖

sin 𝛾
 is then the refractive index 𝑛10. 

 
Figure 10.1: Behavior of light in a Birefringent Medium 
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Now, consider a birefringent medium subjected to external loads. For every incident ray Ri, double 

refraction gives rise to two refracted rays, Ro
 
and Re

 
at different angles 𝛾0

 
and 𝛾𝑒 respectively with 

respect to the normal. These two rays propagate inside the medium with different velocities. When 

they exit from the medium, a phase difference Δ has occurred between the two waves. This phase 

difference is the result of stress in the medium and their relationship is the stress-optical law given 

below  

 

 𝜎1 − 𝜎2 =
𝛥

2𝜋

𝑓𝜎

𝐷
=

𝑁𝑓𝜎

𝐷
 (10.1) 

 

where N is the fringe order, 𝑓_𝜎 is the material stress fringe value and D the thickness of the 

birefringent material; 𝜎1, 𝜎2 are the two principal stresses, and in photoelasticity, it is always 

assumed that𝜎1 ≥ 𝜎2. Thus, once the fringe order is known, the principal stress difference 𝜎1 − 𝜎2 

at any point can be determined. 

 

10.3.2 Polariscope 

The instrument that enables one to determine the stress-induced phase difference is called a 

polariscope. There are two types of polariscopes. One is called a plane polariscope. Its optical 

elements consist of one polarizer and one analyzer. A polarizer is an optical element that only 

allows a light vector to oscillate along a predetermined direction. An analyzer is also a polarizer 

that is used to analyze the polarization state of the impinging light. As shown in Figure. 10.2, the 

direction of polarization of polarizer P and analyzer A are perpendicular to each other. 

 

 
Figure 10.2: Optical arrangement of a plan polariscope 

 

It can be shown that the intensity of light that immerges from the analyzer when a stressed 

photoelastic model is placed between them is given by the following equation, 

 

 𝐼 = 𝐾 sin2 𝛼  ×  sin2
Δ

2
 (10.2) 
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where K is a constant, α the angle between 𝜎1 and the axis of the polarizer and Δ the stress-induced 

phase difference. Two type of dark fringes are observed. One is the result of 

 

   𝐼 = 0, when sin 𝛼 = 0, 𝛼 = 𝑛𝜋; 𝑛 = 0,1,2,3 … 

 

These fringes are called isoclinics, or locations of points of equal principal directions. The other 

type of dark fringes is the result of 

 

   𝐼 = 0, when sin
Δ

2
= 0,

Δ

2
= 𝑛𝜋; 𝑛 = 0,1,2,3 … 

since 

𝑁 =
Δ

2𝜋
= 𝑛 ; 𝑛 = 0,1,2,3 … 

it is nothing but the fringe order given in the stress-optical law. These fringes are called 

isochromatics because they appear as colored in a white light illumination, except the zeroth order 

fringe which is always dark. 

 

The second type of polariscope is the circular polariscope whose optical arrangement is as shown 

in Figure. 10.3. It has two more optical elements called quarter wave plates. The first quarter wave 

plate converts a plane-polarized light emerging from the polarizer with a circularly polarized light. 

The second quarter wave plate with its fast axis and slow axis orientation reversed cancels the 

effect of the first quarter wave plate. It can be shown that if a stressed photoelastic model is Iplaced 

in between the two quarter-wave plates of a circular polariscope the presence of the isoclinics is 

eliminated. The resulting light intensity emerges from the analyzer is simply,  

 

 

 𝐼 = 𝐾′ sin2
Δ

2
, (10.3) 

 

where K’ is a constant. It can also be shown that if the analyzer is turned 90° so that it is parallel 

to the axis of the polarizer the intensity of the light that emerges is given by 

 

 𝐼 = 𝐾′ cos2
Δ

2
. (10.4) 

 

Thus, 

 

    𝐼 = 0, when 
Δ

2
=

(2𝑛+1)𝜋

2
; 𝑛 = 0,1,2,3 … 

 

And the isochromatic fringe order N is 
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𝑁 =
Δ

2𝜋
=

2𝑛 + 1

2
= 𝑛 +

1

2
; 𝑛 = 0,1,2,3 … 

 

These are the half order fringes. 

 
Figure 10.3: Optical arrangement of a circular polariscope 

 

10.4 Stress concentrations and Inglis’ solution 

In 1913 Charles E. Inglis developed his linear elastic solution for the stress field surrounding an 

ellipse. This was a major step in the development of Linear Elastic Fracture Mechanics (LEFM) 

Theory and allows for a simple method of determining stress concentration factor of specimens 

loaded in tension with elliptical or circular holes. A infinitely large plate with a central ellipse with 

major axis of width 2a and minor axis of height 2b is subjected to a far-field uniaxial tensile stress 

as shown in Figure. 10.4. 

  
Figure 10.4: Plate with an elliptical hole at the center loaded in uniaxial tension 

Z

Axis of

polarization

Light

source

Axis of

polarization

Analyzer

2

Polarizer

4 4

4 4

Fast

axis

Slow

axis

First quarter-wave plate

Slow

axis

Fast 

axis

A

P



LAB 10: Photoelasiticity for Stress Concentration Analysis 

86 
 

 

Inglis' solution allows for a relationship of the stress at the location of the arrow in Figure 10.4 to 

be dependent on the dimensions of the ellipse and the value of the far-field uniaxial tensile stress. 

Inglis’ solution is as follows: 

 

 

 𝜎𝐶 = (1 + 2
𝑎

𝑏
) 𝜎∞, (10.5) 

 

10.5 Determination of Stress concentration in a perforated sheet undergoing 

tensile load. 

A strip of photoelastic material of width D with a central hole of diameter 2a is subjected to a far-

field uniaxial tensile stress as shown in Figure. 10.5. The stresses at both sides of the edges of the 

hole along the x-axis will be much higher than the same strip without a hole under the same loading 

condition. This phenomenon called stress concentration. The stress at the edge of the hole along 

x-axis compare to the stress in the same strip without a hole under same loading condition is called 

the Stress Concentration Factor. The stress concentration factor is defined as follows: 

 

 𝐾𝐶 =
𝜎𝐶

𝜎∞

, (10.6) 

 

where  

 𝜎∞ =
𝑃

𝐴
 (10.7) 

 

and 

 

 σc  = σ1 − σ2 =
Nf𝜎

𝐷
 (10.8) 

 

Using the Fringe order at x = a, y = 0 

D: Thickness of the specimen. 

fσ: material stress fringe value. 

P: the load applied to the specimen 

A: the section area of the specimen without a hole. 
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Figure 10.5: Plate with a circular hole at the center loaded in uniaxial tension 

 

10.6 Testing procedure: 

1. Change the fixtures and the specimen with a central hole for tensile test.                               

2. Using white light source with dark background, adjust the height of the moving frame of 

the loading frame that the image of the central hole and the whole width of the specimen 

can be observed.                          

3. Measure the width and the thickness of the specimen.                                                              

4. Use the Balance adjustment to set the strain indicator readings of the load to zero before 

starting to load the specimen.                                                 

5. Increase the load slowly (the maximum load does not exceed 400 lb) the color isochromatic 

fringe pattern can be observed.                                                                                                        

6. There are four dark spots along the edge of the hole symmetrically and always in dark even 

the load is changing. These are four singularities and  = 0 therefore N = 0 

7. Start from these singularities, follow the color sequence of the isochromatic fringes to 

determine the fringe orders.                                                                                                             

8. Place the filter in front of the camcorder. The isochromatic fringes change to sharper dark 

fringes. Start to increase the load (the maximum load does not exceed 400 lb) until the Nth 

order isochromatic fringe just appears at the edge of the hole along x-axis. Record the load 

from the strain indicator reading. Set the HD digital camcorder to PHOTO mode and 

manual exposure mode, the images will save in the memory stick. Take the color and black 

and white pictures using manual exposure to get the best exposure without and with the 

filter in front of the HD digital camcorder 

9. Run the experiment three times. 





Y

X

D

2a
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10. Repeat for the two specimens with the ellipses, but make sure the maximum load does not 

exceed 300 lb 

 

10.7 Requirement: 

1. Plot the fringe order distribution start from the edge of the hole along x – axis ( y = 0 ).         

2. Find out the stress concentration factor Kc for the circular specimen. Using the material 

stress fringe value of 𝑓𝜎 = 40
𝑙𝑏𝑓

𝑖𝑛
, At  x = a, y = 0. Note that σyy = σ1, and  σr =  σ2 = 0.  

3. Compare your result for the stress concentration factor Kc with the theoretical solution 

using Inglis’ solution. 

4. Find out the uncertainties of experimental results and show an uncertainty tree. 
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1 WRITING LAB REPORTS FOR MEC 316 
 

 

1.1 Introduction 

The purpose of technical reporting is to convey information obtained through analysis and/or 

experiments. The audience can vary widely, depending on the type of report, and can range from 

colleagues familiar with your field of study to those with very little prior knowledge of the 

material, e.g., a summary of the experiments for upper management. 

A sobering truth of technical reports is that they can easily have a lifetime of decades. It is very 

common to see papers 10, 20 even 30 years old or more referenced in all types of archival 

documents (browse through any recent research journal in any field in the library to verify this). 

Furthermore, it is not uncommon for the experiment and results discussed in the report to represent 

an investment of tens to hundreds of thousands of dollars.   

Finally, the written word is permanent: mistakes, oversights, erroneous conclusions, etc. all remain 

unabated with time. When a person reads the report, their impression of your work is formed at 

that time and flaws in a written piece of work reflect poorly on the writer.  

Fortunately writing is an acquired skill. Particularly with regard to technical writing, a reasonable 

set of guidelines can be established. This document serves to provide a brief overview of such 

guidelines. 

 
 

1.2  Lab Report Format 

The lab report format for this class consists of the following items, in the order shown: 
 

1. Title Page – Include lab title, date, author and fellow group members.   

2. Abstract – The abstract should be a single, short paragraph that describes the purpose of the 

experiment, the variables to be measured, and the basic measurement concept. The abstract 

serves as a summary of the entire work. 

3. Introduction – An introduction to the topic of the experiment: why it is important, what 

context the results have to the real world, how the measured values are used or influence 

engineering design and analysis. Do not discuss lab procedures or detailed lab descriptions 

here. 

4. List of Equipment – Briefly describe the list of equipment and instrument used to conduct 

the experiment. Make a sentence to introduce the list and include manufacturer and model 

number where appropriate.  

5. Experimental Theory – This section should describe in detail the theoretical basis of the 

experiment.  For example, if the heat flow in a composite cylinder is to be determined from 

the temperature distribution along the cylinder, describe the relevant governing equations and 

the relationship between the measured values (the temperatures) and the desired quantities 

(the heat flow). A schematic diagram of the experimental apparatus may be included and 

referenced in the discussion.1 All equations should be numbered. 

 
1
 It is always a good idea to include a schematic diagram of the basic experimental approach.  We are not requiring it 

in this class due simply to time requirements. 
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6. Experimental Procedure – This section describes in detail the steps performed during the 

experiment to obtain the required data. Do not simply copy the steps from the lab manual!  

This is plagiarism and you will have points taken off. You should understand the experiment 

well enough to describe it in your own words. Do not write this section as a series of steps or 

instructions, and do not write in the future tense (we will, etc.). You should be able to describe 

the experimental procedure in paragraph form, and avoid commanding the reader to wit: 

“Place the thermometer in the water bath. Record temperature. Record pressure, etc.” 

7. Results – This is the section where your results are actually presented with their total 

uncertainties. Make sentences to describe the calculations involved and the data used. 

Calculations, figures, and tables should be neatly organized. All figures (i.e., graphs, charts, 

diagrams, …) and tables must be labeled with a number and caption, and should be included 

on a single page following the page on which they were referenced. Include units with all 

physical quantities. 

8. Discussion – In this section the results that you obtained are discussed and interpreted. Do 

the results make sense? Are they what you expected from the theory of the experiment? Is 

there a trend in the results? The point here is to provide both a quantitative and qualitative 

analysis of results using deductive reasoning. 

9. Error Analysis and Uncertainty Tree – This section should detail the calculations associated 

with the error analysis and uncertainty of the reported results. Make sentences to guide the 

reader through calculations. Comment on measurement and instrument uncertainties, central 

tendency and dispersion, statistical samples, confidence interval, and error propagation. What 

was the largest source of error? How could this error be reduced? An uncertainty tree can be 

included in this section. 

10. Conclusions – A single paragraph describing the experiment briefly and the results that you 

obtained. There should be NO new results in the Conclusions section! Don’t use any symbols 

or variables in the conclusion section. 

11. References - If you have any. Be sure to keep the format consistent for all references. 

12. Appendices - You can place handwritten calculations, spreadsheet lists, and other data here. 

13. Prelab pages - EACH person from the group must attach his/her prelab pages to the report.    

 

1.3 Grading of the Lab Reports 

Each lab report will be graded on a 100-point scale. The breakdown for the grading is: 

 

Abstract 5 points 

Introduction 5 points 

List of Equipment 5 points 

Theory 10 points 

Experimental Procedure 10 points 

Results 15 points 

Discussion 15 points 
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Error Analysis & Tree 15 Points 

Conclusion 5 points 

Quality of Writing(Clarity/Style/Format) 15 points 

Total 100 points 

 

1.4 Before Beginning Each Lab 

The instructor is required to sign off on your prelab sheet before you start the lab. You must have 

the following items in your sheet before the instructor will sign off on it. 

1.  Brief objective of experiment (2–3 sentences max). 

2.  List of equipment: (manufacturer, model and serial numbers). Do this as soon as you 

arrive at the lab station. 

3.  Equations for the calculations. 

4.  Blank tables for all data that is to be collected. 

Also, everyone should record the data in their prelab sheets.  Even though data are identical, this 

is useful in the event that some data are not recorded by a person, there is a discrepancy in the data, 

one person loses their sheet, etc. Every lab member must turn in their prelab sheets with the lab 

report. 

 

1.5 Deadlines and Late Lab Reports 

Lab reports are due at the beginning of the following lab class.  If the lab is not in at this time, it 

will be considered at least one day late. LATE LABS WILL HAVE TEN (10) POINTS 

DEDUCTED FROM THE FINAL SCORE PER DAY. In addition, every member of the lab 

group will receive the late penalty, regardless of who was the lead author for the report. Note that 

this is for your own protection: people who turn lab reports in late have an unfair advantage due 

to the additional time they have to improve the quality of their lab report. The late penalty 

compensates for this. There will be no exceptions, so don’t even bother to ask.  

 

1.6 General Comments on Lab Report Writing 

● Lab reports must be typed and double spaced2.  Preferred fonts are Times New Roman or Arial, 

and Symbol for Greek letters. Use an 11 or 12 pt. font, a 10 pt. font is too difficult to read and 

a 14 pt. font is too large. Justify the right margin to improve the appearance and readability of 

your report.  

● Be sure to check your spelling. Use the spelling checker on your word processor, but be careful 

of easily confused words (e.g., from vs. form) that will not be flagged. 

● Avoid single lines at the top of pages and headings without any text at the bottom of pages. 

● Don’t copy verbatim from the lab manual. Express the concepts in your own words.  

● Number all pages. 

 
2
 Quite often, reports and documents—especially drafts or versions to be subsequently edited—are double-spaced.  

The reason is a practical one: the editors (instructors in this case), will place comments, suggestions, and corrections 

in the space between lines and the margin.  A single-spaced document makes this very difficult to do. 
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1.7 Figures 

Creating clear, well-designed graphs is not difficult, provided several points are kept in mind.  

Refer to Tables and Figures in your text with capital letters. Also, refer to tables as Table, not 

Sheet. Below is an example of a well-designed graph and a list of things to keep in mind when 

creating graphs. Some points to observe regarding graphs: 

1) All figures (graphs, drawings, charts, photographs, …) should have a caption that includes 

the number of the figure and a brief caption describing the nature of the figure. 

2) Axes: 

a) Label both axes, using words and symbols. 

b) Include the units on both axes. 

c) Use even, integral values for the tick marks (10, 20, 30… not 9.6, 19.2, 28,8…). 

d) Do not use more significant figures than are required: (9.1, 9.2, 9.3, …, not 9.100 9.200, 

9.300, …). 

e) Do not use “e” or “E” to express powers of 10: (1.0×104, 1.5×104, 2.0×104, not 1.0E+04, 

1.5E+04, 2.0E+04).   

f) Factor out large multipliers. In the example graph below, the y-axis is expressed in mm, 

rather than 0.004, 0.006, or 0.008 m.    

g) Labels must be outside of graph. Tick marks can be inside or outside the graph. (Both 

conventions are used in engineering graphs.) 

h) Axes labels should appear at edge of x and y-axes; in the example below, there should be 

no space to the left of the 0.0, the right of 1.0, above 14, or below 4. 

i) Keep the precision the same in axis labels: (0.0, 0.5, 1.0, 1.5, 2.0, not 0, 0.5, 1, 1.5, 2)  

j) Always place a zero before decimal points: (0.1, 0.2, 0.3 not .1, .2, .3) 

3) The plot should span nearly the entire range of the x and y-axes. Do not leave a lot of dead 

space in the graph. 

4) Use a legend to identify each plot (be sure to use different line types!) OR label each plot 

explicitly as shown (best for three plots or less). 

5) When plotting experimental data, always plot data points as symbols. You may optionally 

choose to draw a line through the points. 

6) Error bars should be used to represent the uncertainty in your experimental values obtained 

from the error analysis.  Note that error bars can also be used in the x-direction to represent 

uncertainty in the value associated with the x-axis (not shown in Figure 1). 
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Figure 1.  Temporal evolution of the dye spot radius a for ΔT = 1.0 K and initial size a0 = 5.0 mm. 

Comparison between numerical model (solid line), scaling analysis (dashed line), and experiment (solid 

symbols).  
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2 TIME SAVING TIPS 
 

 

2.1 Report Writing 

Use a good word processor. We recommend using Microsoft Word on either Macintosh or PC 

platforms. Of course, if you are already familiar with other comparable packages, such as LaTex, 

use it. In particular, you should learn to use features such as 

● Styles for formatting text, headings, lists and tables, 

● Frames for placing text,  

● The equation editor (note: not installed with Word by default),  

● Automatic page and equation numbering, and 

● Automated table of contents features, etc. 

 

Use of these features can save a lot of time! Another factor to consider is the word processor your 

lab partners use. Once you have written the first report, it can serve as the framework for 

subsequent reports.  This is particularly true if you use the automated features discussed above.  

 

You can read The Elements of Style by Strunk & White to obtain insights about improving writing 

style3. Other good writing reference books include The Chicago Manual of Style, 14th ed. (1993, 

University of Chicago Press) and Rules for Writers, 2nd ed. (1988, Bedford Publishing). 

 

You may write the following by hand: 

● Error analysis calculations 

● Equations (Note: it is recommended to use Equation Editor in Microsoft Word, rather than 

handwriting, because changes are easier) 

● Drawings (if you want to add them) 

 

2.2 Analysis 

There are a variety of packages on the market that can aid analysis.  For the level of analysis 

required in these labs, MathCAD is a very useful utility to have. Equations can be entered with 

functional arguments as they appear in standard math notation. Units and unit conversion are also 

easily performed. Finally, graphs can be generated that are suitable for the final report. The final 

calculations can be printed for inclusion in the report. The disadvantages are that it can take some 

time to get used to the system and the cost. 

 

Other packages such as Mathematica, Maple, and Matlab will probably be more trouble than they 

are worth for this class. These packages are oriented more towards symbolic manipulations and 

 
3
 The book is not only an excellent and concise summary of the use of English, but it is an entertaining read as well. 

The book was originally composed by William Strunk, a professor of English at Cornell in the early part of the century. 

He compiled, over the years, a list of errors and mistakes that students repeatedly made, and provided it to his students 

as a small booklet. The Elements of Style is essentially this same book in form and content. Read it; you will be happy 

that you did.   
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numerical analysis. If you are a seasoned veteran with one of these packages, however, by all 

means use it if it helps. 

 

2.3 Graphs and Figures 

Many students use Excel for their graphs. The graphs from Excel are perfectly acceptable, however 

Excel is a multi-purpose software package, and is oriented towards the businessperson, rather than 

the scientist and the engineer. Therefore, editing will be required to make Excel graphs appropriate 

for laboratory reports. For instance, while a title is typically included on top of graphs in Excel, it 

should be removed as the figure caption of your document is already used to describe the graph 

content. Axes and labels should also be edited to make graph suitable for laboratory reports. It is 

a good idea to examine graphs in scientific and engineering textbooks and emulate their style. 

 

In general, software packages dedicated to scientific graphing provide more data analysis power, 

easier editing and control of graph properties, and a more professional final appearance. Other 

software include SigmaPlot, DeltaGraph, TechPlot, PSIPlot, Igor Pro, etc. 
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3 ERROR ANALYSIS 

 

 

3.1 Introduction 

As important as reporting a measured value is the determination of the uncertainty of that value.  

Uncertainty establishes a bound in which the reported value is allowed to fall. A typical expression 

for a measured variable is expressed as 

              (P%),  (1)

      

where x' is the true value of the parameter or system being measured,  is the most probable value, 

or nominal value and ux is the uncertainty, or range within which the measured value may vary. In 

this manual, Δx will also be used to represent the uncertainty. Here P% is the confidence interval, 

and is a measure of how often the measured value will fall within the reported range. A confidence 

of 95% is one of the most common values, while values of 68%, 99%, and 50% also find use. Use 

a confidence interval of 95% for all work in this course. Note that the uncertainty ux is expressed 

in the same units as x. Alternatively, the uncertainty can be expressed as a percent of the nominal 

value: 

      x ± v% .   (2) 

 Reporting a measurement without an uncertainty bound is really an incomplete statement of 

the measurement value. 
Example 1 

To simply say that the temperature of an oven is 154 ºC is not necessarily a useful value.  The uncertainly of 

the measurement is also an integral part of the specification of a measurement value. If, for example, 

the oven temperature is 154 ± 2 ºC, and the process in the oven requires a temperature of 154 ± 0.5 ºC, 

then the oven temperature is unacceptable.  On the other hand, if the required temperature is 154 ± 5 ºC 

then the temperature is acceptable.  

 

3.2 Accuracy and Precision 

Accuracy and precision are indicators of the quality of a measurement. Accuracy refers to how 

close the measured value is to the true value. Precision is a measure of how repeatable the 

measurement is, or, equivalently, how much variation there is from measurement to measurement. 

Precision is closely related to repeatability. 

► Accuracy 

Accuracy can be expressed several ways.   

 Absolute error, ε, is simply the difference between the measured value and the true value: 

    ε = true value – measured value.  (3) 

 

 Relative error, εr, is more commonly used, and is defined as  

    .  (4) 

 Note that absolute error has the same units as the measurement value, however relative error 

has no units. Note also that the sign of the error (both relative and absolute) indicates whether the 
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measured value is greater than, or less than, the true value. For positive values of εr, the measured 

value is smaller than the true value, and vice versa for negative εr. 

 The relative error is then used to define the relative accuracy, A, as follows: 

         (5) 

 Values of A close to unity imply the measurement is accurate, i.e., the measured value is close 

to the true value. 
Example 2 

Say a 50.0 g mass is placed on a scale, and the scale reports the measured value as 51.3 g.  The absolute error 

is 50 g – 51.3 g = –1.3 g, the relative error is (50 g – 51.3 g)/50 g =           –0.026, or –2.6%. The relative 

accuracy is then 1 – (–0.026) = 1.026 or 102.6%. 

 Note that in the above examples, it is assumed that the true value is known. In general, this is 

not the case, or we wouldn’t have to perform the measurement in the first place. Nonetheless, it is 

important to ascertain the accuracy of a system, and this is done by placing a known input into the 

system, and recording the output. This process, which is part of the process of calibration, allows 

the accuracy to be estimated. A simple example would be to place known weights on a scale and 

compare the reported measurement from the scale with the known weight that actually is on the 

scale. The scale would then be adjusted to read the correct weight. 

► Precision 

The precision or repeatability of a measurement system refers to the ability of the system to 

indicate a particular value upon repeated, but independent, measurements of a constant input value. 

Precision error is a measure of the random variation to be expected during repeatability trials. 

Note that high repeatability results in a low precision error, but gives no indication of the accuracy 

of the measurement. This is best illustrated with an example. Consider the following measurements 

made on a system to measure π = 3.1415926…  Assume each measurement consists of four 

readings. 

 Case 1:  2.1415  2.1414  2.1416  2.1415 

 Case 2:  3.12   3.17   3.09   3.16 

 Case 3:  3.1415  3.1413  3.1412  3.1417 

 

 Case 1 is precise, but not accurate, Case 2 is accurate, but not very precise, and Case 3 is both 

accurate and precise. Note that high accuracy implies high precision. 

 

3.3 Different Types of Measurement Error 

There are three basic types of measurement error 

1. Systematic, or bias error 

2. Precision, or random error  

3. Illegitimate error  

► Systematic or bias error 

These are fixed or constant values of the error in a given set of measurements. In most cases they 

can be accounted for by calibrating the experiment.   
Example 3 

An everyday example of a bias error would be measuring your height with your shoes on.  Every measurement 

made would have the same amount of error, namely the height of your shoes. No amount of statistical 

averaging would remove this error. 

Sources of such bias error include: 

1. Errors during calibration 
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2. Loading errors, i.e., the measurement system alters the value of the original system 

3. Unaccounted for effects that remain constant with time, e.g., forgetting to account for the 

weight of the wax paper when measuring a small amount of chemical on an analytic 

balance. 

► Precision or random error 

These are random in nature and can be treated by statistical analysis. They occur due to a variety 

of causes, including: 

1. Varying environmental conditions (e.g., changing room temperature and pressure, or room 

vibration), 

 
FIGURE. 1.  Example of bias and random errors. 

 

2. Insufficient sensitivity of the measuring system, and 

3. Drift and fluctuation in the measurement system itself. 

 

The relationship between bias and precision errors is illustrated in Figure 1 above. Note the 

constant offset produced by the bias error, and the spread of the data about due to precision error. 

► Illegitimate errors 

These occur mainly due to oversight (or carelessness!) and consists of the following: 

1. Blunders or mistakes (e.g., reading mm as cm or inches),  

2. Computational errors (e.g., wrong formula or mixed units), or  

3. Incorrect system operation. 

 Note the term illegitimate; these errors are not acceptable as reasons for discrepancies between 

measured and expected values. If illegitimate errors are the cause of the error, the best solution is 

to repeat the experiment to avoid them. In general, all of the above errors introduce uncertainty in 

the measurement. 

 

3.4 Determining Measurement Uncertainty 

 

🙞 Note: This can be very confusing!  Please read carefully!! 🙜 
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Uncertainty analysis (or error analysis) is the procedure by which uncertainties in measured 

quantities are ascertained, and the relationship between these measured values and the reported 

value is established. There are two key steps in performing an uncertainty analysis in a 

measurement: 

1. Establishing the uncertainty of the initial, or input, variables measured, and 

2. Propagating the error in the measured values to any calculated values. 

 

 For example, say you wanted to calculate the density of a piece of wood. You could cut a 

rectangular piece and measure its length, l, width, w, and height, h, to obtain the volume, V, then 

measure its mass, m, with a scale, and finally compute the density, ρ. The calculations are as 

follows: 

     V = lwh   and    ρ = m/V. 

 The input variables are the ones actually measured: l, w, h, and m. The variables V and ρ are 

calculated, or derived from, these initial values. The act of assessing the uncertainty in the density 

measurement involves (1) assessing the uncertainty in l, w, h, and m, and then (2) propagating that 

error to the calculated variables V and then ρ. 

 

3.5 Determining the Uncertainty of Input Variables 

The first step in determining uncertainty is to determine the uncertainty in the input variables 

themselves. There are two main sources of uncertainty in measurements: (1) instrument 

uncertainty and (2) measurement uncertainty. 

► Instrument uncertainty 

Instrument uncertainty arises from the measurement system itself, and represents errors associated 

with the equipment responsible for making the measurement. There are two basic kinds of 

instrument uncertainty: 

(i) Resolution uncertainty, u0.  Resolution uncertainty is simply the inability of the measurement 

device to resolve to an infinite number of digits. The resolution uncertainty is generally taken 

as one-half of the instrument resolution: 

                         (6) 

Consider, for example, a normal thermometer with a scale that reads in 0.1 ºC increments. The 

instrument resolution is then 0.1 ºC, and the resolution uncertainty is ±0.05 ºC. 

 

(ii) Manufacturer’s uncertainty, uc.  The manufacturer’s uncertainty refers to specific errors in the 

instrument (which are usually reported by the manufacturer). These include such things as 

linearity, hysteresis, repeatability, etc. The total manufacturer’s uncertainty is combined using 

the Root Sum Square (RSS) method: 

  (7) 

 Here the uj are the individual instrument uncertainties as reported by the manufacturer. Finally, 

the total instrument uncertainty is obtained by combing the resolution and manufacturer’s 

uncertainty:  

                (8) 
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► Sample measurement uncertainty 

Measurement uncertainty also appears in the measured variable itself that must be estimated.  Both 

bias errors and random errors can be present. Bias errors must be ascertained through calibration, 

which is mentioned elsewhere in this document. For random errors, statistics can be used to 

determine the uncertainty. 

 Say that N measurements are collected on a system. In general, the measurements will vary 

from one measurement to the next, and statistics can be used to analyze such variations. The 

average, or mean, , and sample standard deviation, Sx, are calculated as follows: 

    (9a,b) 

 It is sometimes desirable to know what the range of an additional measurement is expected to 

be. In other words, after making N measurements, what is the expected range of the next, or N+1, 

measurement? Statistics can be used to provide this range, which is expressed as follows: 
 

        (10) 
 

 Here xN+1 represents the value of the next measurement,  is the mean, as defined above, and 

ux  represents the uncertainty of the next measurement with confidence interval P. For example 

after collecting a sample and performing the appropriate statistics, the result of a future 

measurement might be expressed as  

      1.34 ± 0.23 (95%). 
 

 This means that, about 95% of the time, the next measurement made will fall between 1.11 and 

1.57. About 5% of the time, the measurement will fall outside of this region. The mean of the 

measurements  is 1.34, the uncertainty is ± 0.23, and the confidence interval is 95%. 

  

 The calculation of the sample measurement depends on how many measurements are made, 

with the cutoff being about 60 samples.  The following applies: 

 

Small Sample Size (N ≤ 60) 

For smaller sample sizes, i.e., N ≤ 60, the uncertainty increases somewhat due 

to the limited number of samples available for the statistics. To 

account for this, the so-called Student-t distribution is used to determine the 

uncertainty from the standard deviation, Sx. The format is as follows: 

    (11) 

 Here tν,P is the coefficient (coverage factor) that multiplies Sx to obtain the uncertainty, ν = N–

1 is number of degrees of freedom4, and P is the desired confidence interval (in percent).  Values 

of tν,P are obtained from tables. A list of tν,P for ν ranging from 1 to 60, and for confidence intervals 

of 50%, 90%, 95%, and 99% is shown in Table 1. Note that as ν → ∞ the values of tv,P approach 

the values in Eq. (12).   

 
4
 Remember that for a sample taken from the population the number of degrees of freedom, ν, is one less than the 

number of measurements, N, i.e., ν = N–1. This is because the sample will have the same central tendency as the 

population, hence the number of degrees of freedom is reduced by one. 
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Example 4 

Consider the following set of pressure readings made on a compressed air system (in psi): 

  20.3 21.2 19.8 19.7 17.9 18.2 22.3 21.0     19.8 

What is the expected range of a subsequent measurement for a 95% probability? 

 

Solution 

Here N = 9 so ν = 9–1 = 8,  = 20.02 and Sx = 1.40.  For a 95% probability, t8,95% = 2.306 from Table I, 

therefore uP = 2.306·1.40 = 3.229. Thus the next measurement will fall withing 20.0 ± 3.23 psi, i.e., the 

measured pressure will lie between 16.8 and 23.2 psi 95% of the time, or in 19 out of 20 measurements.  

 

 

 

 

 

 

Table I.  Values of Student-t distribution for finite sample sizes 

 
 

 

Large Sample Size (N > 60) 
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If the number of measurements is large (typically > 60), then infinite statistics5 can be used to 

obtain the uncertainty directly: 

 

ux =        Sx   (68%) 

ux = 1.96Sx   (95%)  (12) 

ux = 2.58Sx   (99%) 

 

Note the three popular confidence intervals associated with these statistics: 68%, 95%, and 99%. 

► Uncertainty of the Mean 

It turns out that many times we are not interested in the uncertainty of a single future measurement, 

as the preceding section explains how to do. Rather, we would like to know how close the average, 

or mean, of a collection of measurements is to the true (population) mean.  

 Let’s say you collect a random sample, or make a series of measurements, and perform the 

appropriate statistics on this new sample. Say you then collected a new random sample. You would 

find that, in general, each sample will yield a slightly different sample mean and sample standard 

deviation. This is not surprising, since we are picking different subsets of the entire population 

each time.  

 As you might also expect, the uncertainty of the mean of an entire set of measurements from 

the population mean will be less than the uncertainty of the next measurement represented by Eqs. 

(12) and (11). In other words, the sample mean will be closer to the population mean because the 

random errors will average out among all the measurements. This is in contrast to Eqs. (12) and 

(11) in the preceding section that assign the uncertainty of a single measurement. The uncertainty 

of the sample mean takes the form: 
 

 (P%)               (13) 
 

 Here tν,P is the Student-t distribution discussed above, and x' is the true—i.e., the population—

mean. Here  is the standard deviation of the means, and is defined as6 
 

         (14) 
 

where Sx is the sample standard deviation from Eq. 9b, and N is the number of samples.  Equation 

(13) states that the true value of the population x' will like between  and  P% 

of the time.  

 

When expressing uncertainty for a series of measurements, it is the Standard Deviation of the 

Mean (Eq. (14)) that should be used, not Eqs. (12) and (11). 

Example 5 

Consider the previous example of the pressure readings.  Estimate the bounds of the population mean, based 

on the sample statistics.  

 

 
5
 Infinite statistics assumes there is an infinitely large sample size, i.e., N   .  Finite statistics deals with finite sample 

sizes.  In real life, of course, every sample is finite in size, but it turns out that for values of N  60, infinite statistics 

is a good approximation.  Since infinite statistics are easier to work with, they are often used for large N. 
6
 Note the bar over the subscript x in  to distinguish it from the sample standard deviation, Sx. 
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Solution 

From the previous example, we know  = 20.02, Sx = 1.40, N = 9, and t8,95% = 2.306.  Thus the standard 

deviation of the means is . Thus the true (population) mean is 

expected to fall within  = 20.02 ± 2.3060×466 = 20.02 ± 1.075 , i.e., there is a 95% chance 

that the true mean lies between 18.95 and 21.10. 

 

► Total Uncertainty 

The total uncertainty is the root of sum of square (RSS) of the measurement and instrument 

resolution: 

      (15) 

 This value reflects both the intrinsic uncertainty associated with the measurements used as well 

as the uncertainty during the measurement process. 

 

3.6 Error Propagation 

As mentioned earlier, in most measurements, the quantity actually measured, i.e., the input 

variable, differs from the quantity that is being reported, i.e., the output variable. Consider, for 

example, a simple thermometer. When one reads the “temperature”, in fact the height of a column 

of liquid is measured. The scale on the thermometer is then used to relate the liquid height to the 

temperature itself. The uncertainty of the reported temperature depends on the uncertainty of the 

measurement of the height of the liquid. The error in the input variables is said to propagate to the 

output. 

 Having determined the uncertainty in the input variables as described above, we need to 

determine the error propagation from the input values to the output value(s). To do this, the 

functional relationship (ideally) must be known between the input and output variables. Consider, 

for example, the following relationship for an output variable y that depends on a series of input 

variables x1, x2, x3, etc.   

.   (16) 

 First, note that the average value of y is obtained from the average values of xj: 

     .   (17) 

 Say also that the uncertainty in the input variables Δx1, Δx2, Δx3, etc. is known. Small changes 

(i.e., uncertainties) in y, which arise from the uncertainties Δxj can be determined from a Taylor 

series:  

   (18) 

 Here j = 1, 2, 3, …, and  Δyj refers to the change in y due to the change in xj. The derivative 

∂y/∂xj is called the sensitivity of y to the variable j.  
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3.7 Absolute Uncertainty 

One way to obtain the total uncertainty in y resulting from all the uncertainties Δx1, Δx2, Δx3, …, 

would be to add up the absolute value of all of the individual uncertainty contributions7: 

 (19) 

 While this is certainly acceptable, it has the unfortunate result that every possible source of 

uncertainty will always assume its largest value. In some situations, for example where human 

lives are at stake, this might be mandated. Absolute uncertainty is also the easiest uncertainty to 

calculate. 

 

3.8 Root Sum Square Uncertainty 

A more common technique, however, is called the Root-Sum-Square (RSS) method for assessing 

the output variable uncertainty: 

 (20) 

 As the name implies, the square root of the sum of the square of the individual uncertainties is 

used to compute the total uncertainty in y. Though beyond the scope of this discussion, the above 

equation assumes that each possible source of error is not necessarily at its maximum value at all 

times8. The RSS technique should be used for all uncertainty analysis done in this course.  Also 

use a 95% confidence interval. 
Example 6 

Consider an electrical resistor with a voltage V = 2.38 ± 0.09 volt across it. The resistor has a resistance of 503 

± 2 Ω. Determine the power and the uncertainty of the power dissipated by the resistor.   

Solution: 

Power dissipated by the resistor is V2/R, and, using the average values,  = (2.38 volt)2/(503 Ω) = 0.0113 W. 

The uncertainty is obtained as follows: 

 
Note that the uncertainty in the voltage is the dominant source of uncertainty in the power. 

 
7
 The absolute value is required to avoid cancellations that would otherwise occur when both positive and negative 

terms are combined in the addition process. 
8
 More specifically, the uncertainties are assumed to follow a Gaussian distribution, meaning that, in any given 

situation, only one or two variables will take on their maximum uncertainty, several variables will have some 

uncertainty, and a handful of variables will have almost no uncertainty at all. Say you were measuring the temperature 

of the air in your room, and you determined the uncertainty in the temperature to be  1ºC.  When you make your 

measurements, however, the temperature you obtain is not necessarily off by as much as 1ºC. In all likelihood, if you 

made several measurements over time, some would yield errors as much as 1ºC, other would be less, say 0.3 –0.5 ºC, 

and yet others would be very close to the true value, i.e., the error would be close to zero. The idea of the RSS method 

is to account for such fluctuations in the uncertainty. 
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3.9 Practical Matters 

It is not always possible to measure quantitatively the uncertainty in a system. Consider, for 

example, a gauge on an instrument that fluctuates with time, or the wobble of a rotating shaft on 

an engine as it spins. In such cases, one may not be able to take a meaningful reading from the 

instrument, and an approximation must be used. Use your engineering judgment to approximate, 

to the best of you ability, the magnitude of the fluctuations that you observe, and use this estimate 

directly for ux. 

 Similarly, in very complicated systems, the relationship between input and output variable may 

be very complicated, or may not be known at all. Consider, for example, how the uncertainty in 

the thickness of an airplane wing will affect its lift. This is a tremendously complicated problem, 

and such a relationship cannot be determined with a simple expression like the one above. There 

are a couple of alternative courses of action in such cases.   

 First, if a numerical simulation of the phenomenon is available, it can be used to approximate 

the sensitivity to a variable numerically. This is done by evaluating the output variable y at values 

of and , and using a central difference to approximate the derivative ∂y/∂xj: 

  (21) 

 If a numerical model is not available, or otherwise impractical to use, another — albeit more 

difficult — approach is to determine the sensitivity experimentally. Another wing in the example 

above could be manufactured with a known additional thickness, and the lift measured and 

compared with the original wing to determine the change in lift with wing thickness. Note that this 

option is time consuming, expensive, and limited: the results are only valid for the set of parameters 

that were used for the particular experiment, e.g., air speed, wing length, air density, temperature, 

etc. 

 

3.10 Some Useful Relationships 

Some combinations of uncertainty appear so frequently that they warrant summarizing for future 

use. In the following, a, b, c, etc. refer to values, and Δa, Δb, Δc, etc. refer to the uncertainty in 

those values. Note that the sign ‘±’ means either ‘+’ or ‘–’ in the expression, and either one can 

hold: a ± b can be a + b or a – b. If more than one ‘±’ appears in an expression, then each sign can 

be either ‘+’ or ‘–’: a ± b ± c can be a+b+c or a – b + c, or a + b – c, or a – b – c, and so on. Note 

also that the expression Δa2 is short for (Δa)2, etc. 

 Another very useful expression can be developed for the special case when the functional 

relationship between the unknown and known variables takes the form: 

        (22) 

where n1, n2, …, and m1, m2, …, are integers (1,2,3,…) or rational fractions (1/2, 3/4, 1/5, etc.). In 

this case, the uncertainty in y can be expressed as: 

                 (23) 
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 Note that this works only with variables to simple powers.  For example, this will not work 

with something like sin(x) or (a + b2)3.  
Example 7 

If , find the RSS uncertainty in y, given ρ, U, L, μ and their uncertainies. 

Solution: 

Since each variable appears to a simple power, the above expression can be used.  The uncertainty is obtained 

as follows: 

    
The uncertainty in Δy can be obtained by multiplying both sides by y, where y is calcuated using the nominal 

values of ρ, U, L  and μ. 

 

3.11 Further Reading 

 

1. Theory award Design of Mechanical Measurements, R.S. Figliola and D.E. Beasley, 

John-Wiley, 1991 (used for this write-up). 

2. Measurement Systems, Application and Design, 3rd ed., E. O. Dobelin, McGraw-Hill, 1983. 

3. Mechanical Measurements, 5th edition,  T.G. Beckwith, R.D. Marangoni, and J.H. Lienhard, 

Addison-Wesley, 1993. 

 

Table II.  Some common expressions for uncertainty 

Expression Uncertainty Relationship Derivation 

   

 

 
 

 

 

 

(not shown) 

  (not shown) 

  
(not shown) 

In the following, a, b, c, etc. refer to mean values, and a, b, c, etc. refer to the uncertainty in those values.  Note 

that the sign ‘’ means either ‘+’ or ‘–’ in the expression, and either one can hold: a  b can be a + b or a – b.  If more 

than one ‘’ appears in an expression, then each sign can be either ‘+’ or ‘–’: a  b  c can be a+b+c or a – b + c, or 

a + b – c, or a – b – c, and so on. Note also that the expression a2 is short for (a)2, etc. 
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4 THE UNCERTAINTY TREE:  
TOWARDS A MORE ENJOYABLE ERROR ANALYSIS 

 

 

4.1 Introduction 

Error analysis—particularly for students learning the skill—can be a frustrating, error-prone 

experience. This is especially true if the relationships between the input and output variables are 

complicated, either from complex individual equations, or if a series of equations relating input 

and output variables is required. To make matters worse, textbooks on the subject illustrate error 

propagation concepts with trivial examples that do little to prepare one for real-world error 

analysis. As a result, errors are made by students and professionals alike, particularly for 

complicated systems. 

 This note provides a simple, yet extremely effective tool to properly account for the flow of 

uncertainty from input to output variables. The tool is called an uncertainty tree, and represents a 

graphical depiction of the variable dependence in an error analysis. The variable whose uncertainty 

is ultimately desired, i.e., the output variable, appears at the top of the tree, and the variables that 

it depends upon are listed at sublevels below it. Functional relationships (equations) are used to 

connect one level to another. If the variables at a sub-level depend, in turn, on yet other variables, 

then a second sub-layer is created with the appropriate equation relating the two variables. A tree 

branch is terminated when the uncertainty in a given variable is known, at which point a double 

underline (         ) is used to show the uncertainty in that variable is known. 

 

The idea is best shown by example.  
Example 1 

Say that the kinetic energy of a spherical object is to be determined by measuring the body’s mass and velocity. 

Assume that the velocity is determined by measuring the time it takes the object to pass a given distance, 

and that the mass is calculated by measuring the body’s diameter, from which the volume and density 

are used to determine the mass. We will assume the velocity is constant, and that the ball is 

homogeneous (constant density).   

The equations governing this problem are as follows: 

  TKE = ½mv2     v = x/t  m = ρV  V = 1/6 πd3 
Here: 

TKE  is the kinetic energy of the object (J) 

d  the object’s diameter (m) 

m  the object’s mass (kg)  

v  the velocity (m/s) 

x  the distance traveled (m) 

t   the time taken for the object to cross the distance x (s)  

V  the object’s volume (m3)   

ρ  the density (kg/m3) 

 
 

 

Solution  

The uncertainty in the kinetic energy, TKE, is desired, which depends on the variables m, v, x, and t. We assume 

that the uncertainty in the density ρ, diameter d, distance x, and time t, have been determined.   

The uncertainty tree thus takes the following form: 
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Figure 1 – Uncertainty Tree for Example 1 

 

The uncertainty tree technique is compatible—and indeed, compliments—existing presentations on 

uncertainty analysis provided in standard textbooks. 

 

4.2 Constructing the Uncertainty Tree 

 

Several guidelines will help in constructing the uncertainty tree: 

 

1. Only one variable whose uncertainty is desired should appear at the top of the tree (ΔTKE 

in this case). 

2. All of the variables that contribute to the desired variable are listed one level below the 

original variable (for example, Δm and ΔV make the second level). The process is repeated 

until variables with known uncertainty appear at the bottom of the screen. 

3. Variables whose uncertainty is known are identified with a double underline (         ), and 

denote a terminus (end) to the tree. 

4. Every node of a tree must ultimately be terminated, i.e, have a double underline with it, 

signifying that the uncertainty for that variable is known. 

 

TKE 

TKE = ½mv2    

m v 

V  x   t

  

m = V v = x t 

 d  

 

  

V=1/6 d3 
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5. If an explicit analytic expression, i.e., y = f(x1, x2 x3, …), is known for the input and output 

variable, then the arrow connecting both variables is drawn as a solid. The relationship 

should then also be written near the top and to the left of the arrow (e.g., m = ρV in the 

diagram). 

To determine the uncertainty relationships, simply descend the tree one level at a time.   

Referring to Figure 1, and using the RSS uncertainty, the uncertainty relationships are (the absolute 

value uncertainty can just as easily be used with the tree concept): 

 

Level 1 

    (1) 

Level 2 

 

     (2a) 

     (2b) 

Level 3 

 

       (3) 

 

 Note that, in this example, all uncertainties are ultimately expressed in terms of the uncertainty 

in the ρ, d, x, and t, which, as the problem states, are known. At this point, simply insert the 

appropriate expressions into the equations from each level and solve for the desired uncertainty.
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APPENDIX: STUDENT MANUAL FOR STRAIN GAGE TECHNOLOGY
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