COURSE CATALOG DESCRIPTION:
The emerging field of nanotechnology develops solutions to engineering problems by taking advantage of the unique physical and chemical properties of nanoscale materials. This interdisciplinary, co-taught course introduces materials and nano-fabrication methods with applications to electronics, biomedical, mechanical and environmental engineering. Guest speakers and a semester project involve ethics, toxicology, economic and business implications of nanotechnology. Basic concepts in research and design methodology and characterization techniques will be demonstrated. Course is cross-listed as BME 213, MEC 213, and EST 213 and is required for the Minor in Nanotechnology Studies (NTS).

PRE- OR COREQUISITE(S): Prerequisites: PHY 131 or PHY 125; CHE 131 or ESG 198

Website resources at: www.stonybrook.edu/nanotechnology

<table>
<thead>
<tr>
<th>COURSE LEARNING OUTCOMES</th>
<th>SOS</th>
<th>ASSESSMENT TOOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding tools used in design and analysis of nanotechnology</td>
<td>a b k</td>
<td>Laboratory report</td>
</tr>
<tr>
<td>Nanotechnology applications in electronics, energy, environmental engineering and medicine</td>
<td>a i j</td>
<td>Quizzes</td>
</tr>
<tr>
<td>Understanding the societal implications of nanotechnology, including the role of ethics and regulations</td>
<td>g f h</td>
<td>Presentations</td>
</tr>
</tbody>
</table>

COURSE TOPICS
Week 1. What is nanotechnology?
Week 2. Nanobusiness
Week 3. Nanomanufacturing
Week 4. Nanotechnology in electronics and optics
Week 5. Lab: Formation of metallic nanoparticles
Week 6. Nanomechanics
Week 7. Nanostructures and nanocomposites
Week 8. Materials characterization techniques
Week 9. Safety issues in nanotechnology and research
Week 10. Lab: Making a dye-based solar cell
Week 11: Nanobiotechnology
Week 12: Medical applications of nanotechnology
Week 13: Environmental nanotechnology
Week 14: Societal implications of nanotechnology
Week 15: Final presentations
CLASS/ LABORATORY SCHEDULE:

<table>
<thead>
<tr>
<th>ESM Spring</th>
<th>201</th>
<th>Nanotechnology Studies</th>
<th>LEC</th>
<th>Tu</th>
<th>PM</th>
<th>PM</th>
</tr>
</thead>
</table>

CURRICULUM

This course contributes 3 credit hours toward meeting the required 48 hours of engineering topics.

STUDENT OUTCOMES (SCALE 1-3):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

3 – Strongly supported
2 – Supported
1- Minimally supported

LEAD COORDINATOR(S) WHO PREPARED THIS DESCRIPTION AND DATE OF PREPARATION:

Gary Halada, 5/19/ 2010