ELECTRICAL CIRCUIT ANALYSIS – ESE271 Spring 2023

Harbans S. Dhadwal E-mail: <u>harbans.dhadwal@stonybrook.edu</u> Voice: 632 8396; Fax: 632 8494 Light Engineering, Room 213

LECTURE:

Tuesday and Thursday 11:30 am to 12:50 pm,

OFFICE HOURS:

Tuesday and Thursday 9:00 am - 11:00 am

COURSE WEBSITE:

The course is registered with the Blackboard

Техтвоок:

Fundamentals of Electric Circuits, 6th edition. Charles K. Alexander and Matthew N.O. Sadiku, McGraw Hill (2017) 10: 0078028221

GRADING POLICY:

The course grade will be calculated using the following weights:

Test 1	20%
Test 2	20%
Comprehensive Final	60%

HOMEWORK:

Homework will be assigned on a regular basis but NOT graded for credit. However, it will be collected and evaluated for common misunderstandings. You are strongly advised to do the homework assignments by the specified time.

TEST POLICY:

- All tests will be **Closed book.**
- Student photo ID must be available for inspection.
- NO make-up tests.
- Zero tolerance for academic dishonesty.

TEST SCHEDULE: Test dates are subject to change.

Test 1	Feb 23: 11:30 am 12:50 pm
Test 2	April 11: 11:30 am to 12:50 pm
Final - cumulative	ТВА

The University Senate Undergraduate and Graduate Councils have authorized that the following required statements appear in all teaching syllabi (graduate and undergraduate courses) on the Stony Brook Campus: **Student Accessibility Support Center Statement**

If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact the Student Accessibility Support Center, Stony Brook Union Suite 107, (631) 632-6748, or at <u>sasc@stonybrook.edu</u>. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential.

Academic Integrity Statement

Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Faculty is required to report any suspected instances of academic dishonesty to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology & Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required to follow their school-specific procedures. For more comprehensive information on academic integrity, including categories of academic dishonesty please refer to the academic judiciary website at <u>http://www.stonybrook.edu/commcms/academic_integrity/index.html</u>

Critical Incident Management

Stony Brook University expects students to respect the rights, privileges, and property of other people. Faculty are required to report to the Office of University Community Standards any disruptive behavior that interrupts their ability to teach, compromises the safety of the learning environment, or inhibits students' ability to learn. Faculty in the HSC Schools and the School of Medicine are required to follow their school-specific procedures. Further information about most academic matters can be found in the Undergraduate Bulletin, the Undergraduate Class Schedule, and the Faculty-Employee Handbook.

		ESE271 Spring 2023	
West 1	Lec #1	Basic concepts: current, voltage, power	
Week I Lec #2	Lec #2	Resistor, Ohm's law, Kirchhoff's laws	
Week 2 Lec #3 Lec #4 Lec #4	Lec #3	Nodal and Mesh analysis	
	Lec #4	Circuit theorems	
Week 3 Lec	Lec #5	Dependent sources and operational amplifiers	
	Lec #6	Circuits with operational amplifiers	
Week 4 Lec #7	Lec #7	Material review	
Test 1		Chapters 1 to 5	
Week 5	Lec #8	Capacitors	
	Lec #9	Inductors	
Week 6 Lec	Lec #10	First order RC and RL circuits	
	Lec #11	Second order RLC circuits	
Week 7 Lec #1 Lec #1 Lec #1	Lec #12	Second order RLC circuits	
	Lec #13	AC circuits, sinusoids and phasors, impedance, RLC circuits	
Week 8	Lec #14	AC steady state, nodal and mesh analysis	
	Lec #15	AC steady state, nodal and mesh analysis	
Week 9 Lea	Lec #16	AC power analysis, complex power	
	Lec #17	Material review for Test 2	
Week 10 Test 2 Lec #18	Chapters 6 - 11		
	Lec #18	Introduction to three phase circuits	
Week 11 Lec #1 Lec #2 Lec #2	Lec #19	Magnetically coupled circuits, transformers	
	Lec #20	Frequency response function, Bode plots	
Week 12 Lec #21 Lec #22 Lec #22	Lec #21	Resonant filters	
	Lec #22	Laplace Transform - definition	
Week 13 Lec	Lec #23	Laplace Transform - properties	
	Lec #24	Laplace Transform - application for circuit analysis	
Week 14 Lec #2: Lec #2: Lec #2:	Lec #25	Circuits in s-domain, transfer functions	
	Lec #26	Step and impulse response. Poles. Stable circuits.	
Week 15	Lec #25	Two port networks	
	Lec #26	Material review	