Distributed Teacher and Leader Education

Teacher Candidate Disciplinary Standards Evaluation Form

Teacher Candidate:__________________________ USBID:__________________________

Cooperating Teacher or
University Instructor: __

___ Methods I ___ Methods II Student Teaching Placement ___7-9 ___10-12

DIRECTIONS:

The National Council of Teachers of Mathematics (NCTM) requires all accredited education programs to provide performance evidence showing how well teacher candidates can plan and deliver instruction aligned with the six (6) NCTM Program Standards. This form is our basic means for gathering this information.

Stony Brook instructors use this form to evaluate lesson and unit planning in the methods courses, and it is also used to assess the classroom performance of our student teachers.

We ask that all cooperating teachers complete this form for their student teachers at the end of each placement. Feedback from cooperating teachers is especially important for the continued development of the student teacher since they are in the best position to assess the ability of student teachers to meet the various standards in an authentic classroom setting. This form also provides the Mathematics Education Program with useful information on the strengths and weaknesses of our program.

DSF Math 2019 Revised
FOR COOPERATING TEACHERS

On the following pages, please check the box that best reflects the ability of the teacher candidate to plan and deliver instruction pertaining to the individual standards. Please note that the Indicators for the Content Standards (Standards 9 – 15) for Middle Level and Secondary Mathematics Teachers vary slightly. **Student teacher performance should be assessed in relation to standards expected of beginning teachers.** We strongly encourage the use of narrative comments to elaborate on candidate strengths and weaknesses in the individual standards.

1. Does not meet standards
2. Minimally meets standards
3. Meets standards
4. Exceeds standards

Process Standards (Standards 1-6)

The process standards are based on the belief that mathematics must be approached as a unified whole. Its concepts, procedures, and intellectual processes are so interrelated that, in a significant sense, its “whole is greater than the sum of the parts.” This approach would best be addressed by involvement of the mathematics content, mathematics education, education, and field experience faculty working together in developing the candidates’ experiences.

Likewise, the response to the disposition standard will require total faculty input. This standard addresses the candidates’ nature and temperament relative to being a mathematician, an instructor, a facilitator of learning, a planner of lessons, a member of a professional community, and a communicator with learners and their families.
Standard 1: Content Knowledge

Effective teachers of secondary mathematics demonstrate and apply knowledge of major mathematics concepts, algorithms, procedures, connections, and applications within and among mathematical content domains.

Preservice teacher candidates

1a) Demonstrate and apply knowledge of major mathematics concepts, algorithms, procedures, applications in varied contexts, and connections within and among mathematical domains (Number, Algebra, Geometry, Trigonometry, Statistics, Probability, Calculus, and Discrete Mathematics) as outlined in the NCTM CAEP Mathematics Content for Secondary (Addendum).

(Cooperating teachers should base assessment on the mathematics content areas observed during student teaching.)

<table>
<thead>
<tr>
<th>Evidence in Planning</th>
<th>• Exceeds Standards • Meets Standards • Minimally Meets Standards • Does Not Meet Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence in Teaching</td>
<td>• Exceeds Standards • Meets Standards • Minimally Meets Standards • Does Not Meet Standards</td>
</tr>
</tbody>
</table>

Standard 2: Mathematical Practices

Effective teachers of secondary mathematics solve problems, represent mathematical ideas, reason, prove, use mathematical models, attend to precision, identify elements of structure, generalize, engage in mathematical communication, and make connections as essential mathematical practices. They understand that these practices intersect with mathematical content and that understanding relies on the ability to demonstrate these practices within and among mathematical domains and in their teaching.

Preservice teacher candidates:

2a) Use problem solving to develop conceptual understanding, make sense of a wide variety of problems and persevere in solving them, apply and adapt a variety of strategies in solving problems confronted within the field of mathematics and other contexts, and formulate and test conjectures in order to frame generalizations.

2b) Reason abstractly, reflectively, and quantitatively with attention to units, constructing viable arguments and proofs, and critiquing the reasoning of others; represent and model generalizations using mathematics; recognize structure and express regularity in patterns of mathematical reasoning; use multiple representations...
to model and describe mathematics; and utilize appropriate mathematical vocabulary and symbols to communicate mathematical ideas to others.

2c) Formulate, represent, analyze, and interpret mathematical models derived from real-world contexts or mathematical problems.

2d) Organize mathematical thinking and use the language of mathematics to express ideas precisely, both orally and in writing to multiple audiences.

2e) Demonstrate the interconnectedness of mathematical ideas and how they build on one another and recognize and apply mathematical connections among mathematical ideas and across various content areas and real-world contexts.

2f) Model how the development of mathematical understanding within and among mathematical domains intersects with the mathematical practices of problem solving, reasoning, communicating, connecting, and representing.

| Evidence in Planning | • Exceeds Standards
| | • Meets Standards
| | • Minimally Meets Standards
| | • Does Not Meet Standards

| Evidence in Teaching | • Exceeds Standards
| | • Meets Standards
| | • Minimally Meets Standards
| | • Does Not Meet Standards

Standard 3: Content Pedagogy

Effective teachers of secondary mathematics apply knowledge of curriculum standards for mathematics and their relationship to student learning within and across mathematical domains. They incorporate research-based mathematical experiences and include multiple instructional strategies and mathematics-specific technological tools in their teaching to develop all students’ mathematical understanding and proficiency. They provide students with opportunities to do mathematics - talking about it and connecting it to both theoretical and real-world contexts. They plan, select, implement, interpret, and use formative and summative assessments for monitoring student learning, measuring student mathematical understanding, and informing practice.

Preservice teacher candidates:

3a) Apply knowledge of curriculum standards for secondary mathematics and their relationship to student learning within and across mathematical domains.

3b) Analyze and consider research in planning for and leading students in rich mathematical learning experiences.

3c) Plan lessons and units that incorporate a variety of strategies, differentiated instruction for diverse populations, and mathematics-specific and instructional technologies in building all students’ conceptual understanding and procedural proficiency.
3d) Provide students with opportunities to communicate about mathematics and make connections among mathematics, other content areas, everyday life, and the workplace.

3e) Implement techniques related to student engagement and communication including selecting high quality tasks, guiding mathematical discussions, identifying key mathematical ideas, identifying and addressing student misconceptions, and employing a range of questioning strategies.

3f) Plan, select, implement, interpret, and use formative and summative assessments to inform instruction by reflecting on mathematical proficiencies essential for all students.

3g) Monitor students' progress, make instructional decisions, and measure students' mathematical understanding and ability using formative and summative assessments.

<table>
<thead>
<tr>
<th>Evidence in Planning</th>
<th>• Exceeds Standards • Meets Standards • Minimally Meets Standards • Does Not Meet Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence in Teaching</td>
<td>• Exceeds Standards • Meets Standards • Minimally Meets Standards • Does Not Meet Standards</td>
</tr>
</tbody>
</table>

Standard 4: Mathematical Learning Environment

Effective teachers of secondary mathematics exhibit knowledge of adolescent learning, development, and behavior. They use this knowledge to plan and create sequential learning opportunities grounded in mathematics education research where students are actively engaged in the mathematics they are learning and building from prior knowledge and skills. They demonstrate a positive disposition toward mathematical practices and learning, include culturally relevant perspectives in teaching and demonstrate equitable and ethical treatment of and high expectations for all students. They use instructional tools such as manipulatives, digital tools, and virtual resources to enhance learning while recognizing the possible limitations of such tools.

Preservice teacher candidates:

4a) Exhibit knowledge of adolescent learning, development, and behavior and demonstrate a positive disposition toward mathematical processes and learning.

4b) Plan and create developmentally appropriate, sequential, and challenging learning opportunities grounded in mathematics education research in which students are actively engaged in building new knowledge from prior knowledge and experiences.

4c) Incorporate knowledge of individual differences and the cultural and language diversity that exists within classrooms and include culturally relevant perspectives as a means to motivate and engage students.

4d) Demonstrate equitable and ethical treatment of and high expectations for all students.

4e) Apply mathematical content and pedagogical knowledge to select and use instructional tools such as manipulatives and physical models, drawings, virtual
environments, spreadsheets, presentation tools, and mathematics-specific technologies (e.g., graphing tools, interactive geometry software, computer algebra systems, and statistical packages); and make sound decisions about when such tools enhance teaching and learning, recognizing both the insights to be gained and possible limitations of such tools.

| Evidence in Planning | • Exceeds Standards
| | • Meets Standards
| | • Minimally Meets Standards
| | • Does Not Meet Standards |

| Evidence in Teaching | • Exceeds Standards
| | • Meets Standards
| | • Minimally Meets Standards
| | • Does Not Meet Standards |

Standard 5: Impact on Student Learning

Effective teachers of secondary mathematics provide evidence demonstrating that as a result of their instruction, secondary students’ conceptual understanding, procedural fluency, strategic competence, adaptive reasoning, and application of major mathematics concepts in varied contexts have increased. These teachers support the continual development of a productive disposition toward mathematics. They show that new student mathematical knowledge has been created as a consequence of their ability to engage students in mathematical experiences that are developmentally appropriate, require active engagement, and include mathematics-specific technology in building new knowledge.

Preservice teacher candidates:

5a) Verify that secondary students demonstrate conceptual understanding; procedural fluency; the ability to formulate, represent, and solve problems; logical reasoning and continuous reflection on that reasoning; productive disposition toward mathematics; and the application of mathematics in a variety of contexts within major mathematical domains.

5b) Engage students in developmentally appropriate mathematical activities and investigations that require active engagement and include mathematics-specific technology in building new knowledge.

5c) Collect, organize, analyze, and reflect on diagnostic, formative, and summative assessment evidence and determine the extent to which students’ mathematical proficiencies have increased as a result of their instruction.

| Evidence in Planning | • Exceeds Standards
| | • Meets Standards
| | • Minimally Meets Standards
| | • Does Not Meet Standards |

| Evidence in Teaching | • Exceeds Standards
| | • Meets Standards
| | • Minimally Meets Standards
| | • Does Not Meet Standards |

Standard 6: Professional Knowledge and Skills

DSF Math 2019 Revised
Effective teachers of secondary mathematics are lifelong learners and recognize that learning is often collaborative. They participate in professional development experiences specific to mathematics and mathematics education, draw upon mathematics education research to inform practice, continuously reflect on their practice, and utilize resources from professional mathematics organizations.

Preservice teacher candidates:

6a) Take an active role in their professional growth by participating in professional development experiences that directly relate to the learning and teaching of mathematics.
6b) Engage in continuous and collaborative learning that draws upon research in mathematics education to inform practice; enhance learning opportunities for all students’ mathematical knowledge development; involve colleagues, other school professionals, families, and various stakeholders; and advance their development as a reflective practitioner.
6c) Utilize resources from professional mathematics education organizations such as print, digital, and virtual resources/collections.

(Cooperating teachers should base assessment on evidence of candidate’s professional knowledge and skills that can be assessed through usual observations and daily interactions.)

<table>
<thead>
<tr>
<th>Evidence in Planning</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Exceeds Standards</td>
</tr>
<tr>
<td></td>
<td>• Meets Standards</td>
</tr>
<tr>
<td></td>
<td>• Minimally Meets Standards</td>
</tr>
<tr>
<td></td>
<td>• Does Not Meet Standards</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evidence in Teaching</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Exceeds Standards</td>
</tr>
<tr>
<td>• Meets Standards</td>
</tr>
<tr>
<td>• Minimally Meets Standards</td>
</tr>
<tr>
<td>• Does Not Meet Standards</td>
</tr>
</tbody>
</table>

Please provide us with narrative comments expanding upon the strengths and weaknesses of our teacher candidate in the space below.