Mitigating nitrogen beyond the source with reactive barriers and bioextraction

Nils Volkenborn, Michael Doall, Chris Gobler
Treatment of Legacy Groundwater Nitrogen with Permeable Reactive Barriers to Mitigate Coastal Ocean Eutrophication
Water Quality Improvement Project (WQIP) Program

Ron Paulsen
Molly Graffam
Matt Sclafani
Patrick Murray

Hampton Hills Association
Community Preservation Fund
Town of Southampton
Town of Brookhaven

Acknowledgements

Chris Gobler
Stuart Waugh
Frank Russo
Hilary Brooks
Jing-An Lin
Ian Dwyer
Caitlin Asato
Jackie Collier
Xinwei Mao
Qingzhi Zhu

Ron Paulsen
Molly Graffam
Matt Sclafani
Patrick Murray

Henry Bokuniewicz
Christof Meile

Stony Brook University
NYS Center for Clean Water Technology

Cornell University Cooperative Extension

SoMAS School of Marine and Atmospheric Sciences

STONY BROOK UNIVERSITY

FAR BEYOND
The problem: “Legacy Nitrogen”

- Over the past decades we have loaded Long Island’s aquifers with nitrogen.
The problem: “Legacy Nitrogen”

- Over the past decades we have loaded Long Island’s aquifers with Nitrogen.
- Eventually this groundwater will enter our coastal bays mainly through submarine groundwater discharge.
- Even if we would stop releasing N to Long-Island aquifers today, this “legacy nitrogen” will continue to seep into our coastal bays for decades.

Modified from: Jack Cook, WHOI

Groundwater Travel Times

“All of Long Island is a watershed”

Misut and Monti 2016
Permeable Reactive Barriers (PRBs) can be part of the cure

- PRBs are below-ground walls with “reactive media” that intercept groundwater flow along the natural hydraulic gradient.

- Due to their high hydraulic conductivity, they attract water from depth.

- Woodchip-based PRBs can efficiently remove nitrate from groundwater by providing a carbon source for denitrifying soil microbes (analogue to NRBs) (Robertson et al., 2008; Graffam et al. 2020).

EPA-542-F-21-01

modified from Robertson et al. 2005
PRB installations close to the shoreline has advantages

- N-loading to impaired surface water bodies is reduced soon after installation.
- Large volumes of groundwater can be treated at relatively shallow depths due to the vertical convergence of flow paths above heavy saltwater wedges.
- Other construction activities at the shoreline (e.g., bulkhead replacement) can be a cost-saving opportunity to integrate PRBs.

Modified from Jack Cook, WHOI
NYS CCWT: Provide science-based recommendations on placement and site-specific PRB design to optimize N-removal performance, while minimizing release of undesired secondary products and minimizing costs.

- Where is a PRB useful and effective?
- Design: trench, funnel-and-gate, woodchip column, or injection well arrays, composition of the reactive media? How thick, wide and deep?
- Cost-benefit ($ per lbs N removed)

Trench-type PRBs

Funnel-and-Gate PRBs

Column Arrays and Injection Wells

Scientific areas addressed by CCWT
- Preinstallation site characterization
- Nitrate-removal rates considering site-specific conditions (groundwater velocities, NOx concentrations)
- Matrix composition (carbon source, hydraulic conductivity and porosity of reactive media)
- Formation and fate of undesired secondary products (focus on greenhouse gasses and metals)

CCWT activities
- Laboratory flow-through column studies
- Monitoring in-ground systems (some in collaboration with CCE)
- Reaction-Transport Modelling (in collaboration with Christof Meile, UGA Athens)
Woodchip-pea gravel mixtures aged in a PRB systems for 5-years:
• Oak vs pine vs oak-pine vs maple-cherry (n=3)

Experimental manipulation
• hydraulic retention times / velocities
• Nitrate concentrations
• Temperature

Monitoring
• N-removal
• Greenhouse gas formation
• Oxygen penetration into woodchip media
Nitrate Removal

- Sustained N-removal by aged woodchips
- N-removal differs between woodchip media
- Effluent nitrate scales with HRT
Nitrate Removal

- Sustained N-removal by aged woodchips
- N-removal differs between woodchip media
- Effluent nitrate scales with HRT

Oxygen Penetration assessed by Planar Optode Imaging used to quantify the “loss” of anoxic media that prevents denitrification at high velocities.

Long-term column experiment 2020-2021
Nitrate Removal
- Sustained N-removal by aged woodchips
- N-removal differs between woodchip media
- Effluent nitrate scales with HRT

Methane formation when nitrate is depleted
Background methane fluxes of < 50 mmol m\(^{-2}\) day\(^{-1}\) are within the range of methane fluxes from salt marshes (Al-Hay and Fulweiler 2020).

Pollution swapping!
Nitrate Removal

- Sustained N-removal by aged woodchips
- N-removal differs between woodchip media
- Effluent nitrate scales with HRT

Adequate PRB thickness – temp. dependance

- Nitrate concentration decline: 4.5-6 mg L\(^{-1}\) per ft of hardwood media at summer temperatures.

- Ideal PRB thickness can be modeled.
Model Simulations of different PRB designs

- Informed by laboratory experiments and measurements (biogeochemical rates, matrix properties)
- Informed by site-specific hydrological settings (groundwater velocities, soil hydraulic conductivity)
- Validation by performance monitoring of in-ground systems

Groundwater velocities

Groundwater nitrate

- 2.5 ft thick trench
- 5 ft thick trench
- Column array
Testing different PRB designs

Based on O_2 penetration and N-removal data and modelling we predicted that a 2.5 ft thick trench PRB would be optimal for the Hampton Bays site (close to complete N-removal in summer; minimal methane production).

- **2.5 ft thick trench**
 - 171 ft3 of woodchips

- **5 ft thick trench**
 - 342 ft3 of woodchips

- **Column array**
 - 76 ft3 of woodchips

- **Control**

Each PRB type in triplicates in randomized block design

Groundwater flow

Funding: CPF Town of Southampton, Hampton Hills Association
Testing different PRB designs
Installation in September 2020

- Bulkhead sheet perforated belowground
- Column-type PRB
- 2.5 and 5 ft trench-type PRB

PRB installation: test cells behind a marine bulkhead at Hampton Bays (in collaboration with CCE)
Testing different PRB designs
First sampling campaign in April 2020

PRB installation: test cells behind a marine bulkhead at Hampton Bays (in collaboration with CCE)
Hydrobiogeochemical dynamics in test cells:

- Slightly delayed and damped tidal amplitude (4 ft in bay, 2 ft in test cells)
- **Continuously anoxic** conditions in PRB center (2.5ft and 5 ft)
- Occasional seawater intrusion
Nitrate Removal:
- Both trench-type test cells remove all incoming nitrate.
- Column-type test cells remove most of the incoming nitrate.
- No nitrate removal in control cells.

Next steps:
- Continue seasonal monitoring
- Formation and fate of secondary products (methane, dissolved iron)
- Performance over the tidal cycle
Other existing and upcoming PRB pilot installations:

- **Georgica Pond** Carbon Array (groundwater flow dictated by open and closing of the pond)
- **Accabonac Harbor**: Dual-zone PRBs to treat groundwater dominated by ammonia, not nitrate: Oxygen injection, Oxygen Releasing Compounds
- Comprehensive site-investigation at **Shirley Beach** to decide which type of PRB is most suited (DEC, Town of Brookhaven)

Pending Applications

- Injection wells at **Lake Agawam** (CPF funding, Town of Southampton)
Summary

- Strategically placed PRBs are an additional tool in the toolbox to remove legacy nitrogen with immediate reductions of N-input to coastal waters.
- They must be properly designed at suitable sites to be effective.
- Based on construction costs and assuming a 20+year lifetime of a PRB, we estimate a cost of $25 per lbs N removed, which is within the range of other mitigation strategies and likely outweighs the “costs of doing nothing”.

Outlook

- Find sites and secure funding for additional PRB installations
- Determine fate of secondary products (i.e., how much of the methane formed in PRB media will reach the atmosphere)
- Improve reaction-transport models (deep water attraction, O2 penetration, biogeochemical reaction networks)
What can be done once N has been discharged to surface waters?
Bioextraction

Seaweeds

Bivalves
Bivalves assimilate N as they feed, turn it into new tissue, and transfer it to sediments where it may denitrify.
Seaweeds assimilate N and modify water quality
Seaweeds for all seasons

Kelp, December - May

Ulva, March - October

Gracilaria, June - October
Bioextraction with seaweeds: Use of seaweeds to remove N released into the environment
Nitrogen content of kelp per site –
more N removed at sites with more N in the water

[Diagram showing box plots for Nitrogen content per g of kelp in Long Island Sound, Great South Bay, and Moriches Bay.]
Tracing N sources in kelp via isotopes
- where is the N coming from?
Seaweeds assimilate N and modify water quality. Compounds that fight HABs. pH lowering.
Seaweeds (Kelp, Ulva, Gracilaria, Porphyra) improve water quality beyond N

Protect bivalves against ocean acidification

Combat harmful algal blooms

- Tang and Gobler, 2011, Harmful Algae
- Tang et al., 2014, Journal of Applied Phycology
- Sylvers and Gobler, 2021, Harmful Algae
- Bennitt et al., 2022, Journal of Applied Phycology
The Johnny Appleseed of Sugar Kelp

The quest of a Long Island seaweed farmer to make kelp the next kale.

Michael Doall, Associate Director of Aquaculture and Shellfish Restoration
Shallow water cultivation of sugar kelp *Saccharina latissimi*: Diversifying Long Island oyster farms and getting kelp into areas most in need of nutrient bioextraction

Michael Doall*, Brooke Morrell, Tim Curtin, Christopher Gobler

School of Marine & Atmospheric Sciences, Stony Brook University

michael.doall@stonybrook.edu
In New York, commercial mariculture is occurring in the three main estuaries surrounding Long Island.
NY mariculture is one crop - Oysters

NY mariculture industry composed of small owner-operated oyster farms, less than 10 acres in size.

51 farms reported production of ~ 6 million oysters in 2019
• Growing interest among NY oyster farmers in growing sugar kelp (*Saccharina latissima*) to diversify crops and create added revenue streams.
• Growing interest among NY oyster farmers in growing sugar kelp (*Saccharina latissima*) to diversify crops and create added revenue streams.

• Growing interest among coastal managers and environmental groups in using kelp farming for nutrient bioextraction to combat the negative impacts of eutrophication.
Shallow water – A limitation for NY kelp farming?

• Many NY oyster farms are in shallow waters (<10 ft), particularly in the South Shore Estuary.
Shallow water – A limitation for NY kelp farming?

• Many NY oyster farms are in shallow waters (<10 ft), particularly in the South Shore Estuary.

• Shallow bays often are often most impacted by eutrophication.
Shallow water – A limitation for NY kelp farming?

• Many NY oyster farms are in shallow waters (<10 ft), particularly in the South Shore Estuary.
• Shallow bays with low flushing are most impacted by eutrophication
• Kelp farming typically done in deep waters (>18 ft)
• Conventional wisdom is that you can’t grow kelp in shallow water
 • Higher biofouling and grazing
 • Higher water temps
 • Lower growth
Line Installation & Seeding
Standard longline method (suspended lines)
Lines suspended a fixed distance below the surface

Example 500' Sugar Kelp Longline Layout
Not-to-Scale
2018-07-09

Key
- 16" White Mooring Buoy
- 12" Black Floatation Buoy
- Water Surface
- Knot: In-Line Bowline or “Figure 8”
- “Pigtails” (5' line with loop on both ends)
- Sugar Kelp (Saccharina latissima)
- 250 lb anchor (mushroom, block or screws depending on lease bottom)
- Bottom
Staked line method used in waters <4 ft
Lines staked a fixed distance above the bottom

Legend
- 4’ Screw anchor
- 5 ft pigtail
- ½” rope (100 ft kelp line)
- Water surface
- Bay bottom
Kelp cultivation experiments at 16 locations over 4 growing seasons (2019-2022)

- Staked lines (<4 ft MLW)
- Suspended lines (>4 ft MLW)
Crop Yields
Reproducible Success in Shallow Waters

Moriches Bay (2019)
Great Gun Shellfish Farm
~ 2 ft MLW

2019

2020

2021

2022
Crop Yields – Shallow vs Deep

- Highest yields across sites and years in the shallowest location (2 ft MLW)
 - Line yields 9 lb ft\(^{-1}\) (13.4 kg m\(^{-1}\))
 - Kelp blades over 12 feet long

- Shallow locations had higher kelp growth early in season

- Shallow locations also experienced earlier onset of deterioration from fouling, grazing, and senescence
 - Warmer water temperature
 - Blades touching bottom
Crop Yields – Shallow vs Deep

- Differences in kelp growth between sites reflect environmental differences rather than differences in cultivation method (staked vs. suspended lines)
 - Similar growth between shallow and staked lines within sites
Crop Yields – Shallow vs Deep

- Differences in kelp growth between sites reflect environmental differences rather than differences in cultivation method (staked vs. suspended lines)
 - Similar growth between shallow and staked lines within sites

- Very high growth in deep water (~40 ft) in the East River in Bronx, NY

Photo: Johnny Milano
Crop Yields – Shallow vs Deep

- Differences in kelp growth between sites reflect environmental differences rather than differences in cultivation method (staked vs. suspended lines)
 - Similar growth between shallow and staked lines within sites

- Very high growth in deep water (~40 ft) in the East River in Bronx, NY

- Deeper water areas with slower growth, like the Peconic Estuary, have lower nutrient levels.
Implications of shallow-water kelp farming

✓ Potential for high crop yields in areas with oyster farms and in areas most in need of nutrient bioextraction

HYPOTHETICAL ONE-ACRE SUGAR KELP FARM DESIGN IN SHALLOW WATERS (MORICHES BAY, GREAT SOUTH BAY)

- Assume 40, 200-foot kelp lines @ 5-foot spacing
- Assume 4 to 9 lbs per foot at peak biomass
- 800 to 1,800 lbs per line x 40 lines = 32,000 to 72,000 pounds of kelp per acre
Nutrient Bioextraction
Nitrogen Bioextraction in shallow waters (Moriche Bay, 2019-2021)

- Crop yields (fresh weight) = 32,000 to 72,000 lbs per acre
- Crop yields (dry weight) = 3,026 to 6,811 lbs per acre

Assume 40, 200-foot kelp lines with peak biomass yields of 9 lbs per ft
Assume 4 to 9 lbs per foot at peak biomass
800 to 1,800 lbs per line x 40 lines
32,000 to 72,000 pounds of kelp per acre

\[y = 0.0946x - 0.758 \]
\[R^2 = 0.9302 \]
Nitrogen Bioextraction in shallow waters (Moriche Bay, 2019-2021)

- Crop yields (fresh weight) = 32,000 to 72,000 lbs per acre
- Crop yields (dry weight) = 3,026 to 6,811 lbs per acre
- Nitrogen content of kelp tissue at peak biomass = 1.83% to 1.99%

• Assume 40, 200-foot kelp lines with peak biomass yields of 9 lbs per ft
• Assume 4 to 9 lbs per foot at peak biomass
• 800 to 1,800 lbs per line x 40 lines

32,000 to 72,000 pounds of kelp per acre

Kelp Nitrogen Content (%)

- 2019
- 2020
- 2021

Crop yields (fresh weight) = 32,000 to 72,000 lbs per acre
Nitrogen content of kelp tissue at peak biomass = 1.83% to 1.99%
Nitrogen Bioextraction in shallow waters
(Moriches Bay, 2019-2021)

- Crop yields (fresh weight) = 32,000 to 72,000 lbs per acre
- Crop yields (dry weight) = 3,026 to 6,811 lbs per acre
- Nitrogen content of kelp tissue at peak biomass = 1.83% to 1.99%
- Nitrogen removed = 55.4 to 135.5 lbs N per acre
Nitrogen Bioextraction in shallow waters (Moriches Bay, 2019-2021)

- Crop yields (fresh weight) = 32,000 to 72,000 lbs per acre
- Crop yields (dry weight) = 3,026 to 6,811 lbs per acre
- Nitrogen content of kelp tissue at peak biomass = 1.83% to 1.99%
- Nitrogen removed = 55.4 to 135.5 lbs N per acre
- Annual nitrogen removal equivalent to 5 to 11 innovative/alternative septic systems
Acknowledgements

Collaborators:
• Greenwave
• Gobler Lab
• Partner oyster farms

Funding from:
• USDA Specialty Crop Block Grant Program / New York Farm Viability Institute
• New York Sea Grant
• Suffolk County
• Long Island Sound Study
• NYSDEC
Thank you!