

Nanocellulose Membrane Technology & Membrane Bioreactors

Sarah Lotfikatouli^{1,2}, Pejman Hadi Myavagh^{1,3}, Xinwei Mao², Benjamin Hsiao³, Christopher Gobler^{1,4}, <u>Harold Walker^{1,2}</u>

¹NY State Center for Clean Water Technology (CCWT), ²Civil Engineering Department, ³Chemistry Department, ⁴School of Marine and Atmospheric Science

- Introduction to Membrane Bioreactors (MBRs)
- MBR as platform for Novel Denitrification Pathways
- Synthesis and Performance of Nanocelluose Membranes
- Conclusions and Future Work

Membrane Bioreactors

Advantages:

- Smaller reactor size;
- Elimination of settling/clarification;
- Smaller footprint;
- High-quality effluent
- Platform for Novel Denitrification Pathways.

Disadvantages:

- Membrane fouling
- Membrane cost

Platform for Novel Denitrification Pathways

Achieve efficient nitrogen removal from onsite wastewater using a bioreactor with optimum micro-aeration cycles.

Stony Brook University Lab-scale MBR development for nitrogen removal

Moving bed biofilm reactors to study different carriers for nitrogen removal in biofilm

Bioreactor with intermittent aeration to study nitrogen removal via short-cut nitrification/denitrification

Intermittent aeration is applied to achieve both nitrification (oxic) and denitrification (anoxic) with the available carbon in the influent, and the microbial species for efficient nitrogen removal are enriched during this process.

Current stage and the next steps

<u>Stage 1</u>: Lab-scale bioreactor set-up and system start-up (*completed*). <u>Stage 2</u>: Full-nitrification with synthetic onsite wastewater (*completed*). <u>Stage 3</u>: Modify the aeration pattern to achieve simultaneous nitrification/denitrification (*current*).

<u>Stage 4</u>: Study the foulant properties on membrane unit, elucidate microbial community composition that governs the function of the reactor, and develop pilot-scale system at research trailer (next stage).

Electrospun – Cellulose Nanofiber (E-CNF) Membranes

What is Fouling?

Foulants

- Suspended particulates and colloids
- Soluble microbial products

Cellulose Nanofiber Preparation

Cellulose Nanofiber Preparation

TEM image of the cellulose nanofibers

Stony Brook University Cross-sectional SEM image of E-CNF

Clean Water Flux

Time (min)

Fouling and Rejection

Zeta Potential

рΗ

Contact angles of the conventional membranes

Contact angles of the hierarchical membranes

Conclusion and Future Work

- Lab-scale MBBR-MBR system up-and-running and being used to explore simultaneous nitrification/denitrification
 - Relate microbial pathways to system function
 - Develop pilot-scale system at research trailor
- Nanocellulose membranes show superior flux, rejection, and fouling properties compared to conventional membranes
 - Integrate nanocellulose membranes into lab- and pilotscale systems

