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Machine-learning for designing nanoarchitectured
materials by dealloying
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Machine learning-augmented materials design is an emerging method for rapidly developing

new materials. It is especially useful for designing new nanoarchitectured materials, whose

design parameter space is often large and complex. Metal-agent dealloying, a materials

design method for fabricating nanoporous or nanocomposite from a wide range of elements,

has attracted significant interest. Here, a machine learning approach is introduced to explore

metal-agent dealloying, leading to the prediction of 132 plausible ternary dealloying systems.

A machine learning-augmented framework is tested, including predicting dealloying systems

and characterizing combinatorial thin films via automated and autonomous machine learning-

driven synchrotron techniques. This work demonstrates the potential to utilize machine

learning-augmented methods for creating nanoarchitectured thin films.

https://doi.org/10.1038/s43246-022-00303-w OPEN

1 Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA. 2National Synchrotron Light Source II,
Brookhaven National Laboratory, Upton, NY 11973, USA. 3 Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
11794, USA. 4 Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. 5 Independent
Researcher, Taipei 106, Taiwan. 6 Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA. 7Department of
Joint Photon Science Institute, Stony Brook University, Stony Brook, NY 11794, USA. 8 Center for Functional Nanomaterials, Brookhaven National Laboratory,
Upton, NY 11973, USA. ✉email: czhao@bnl.gov; Karen.Chen-Wiegart@stonybrook.edu

COMMUNICATIONS MATERIALS |            (2022) 3:86 | https://doi.org/10.1038/s43246-022-00303-w |www.nature.com/commsmat 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43246-022-00303-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43246-022-00303-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43246-022-00303-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43246-022-00303-w&domain=pdf
http://orcid.org/0000-0002-3538-6199
http://orcid.org/0000-0002-3538-6199
http://orcid.org/0000-0002-3538-6199
http://orcid.org/0000-0002-3538-6199
http://orcid.org/0000-0002-3538-6199
http://orcid.org/0000-0002-7288-4787
http://orcid.org/0000-0002-7288-4787
http://orcid.org/0000-0002-7288-4787
http://orcid.org/0000-0002-7288-4787
http://orcid.org/0000-0002-7288-4787
http://orcid.org/0000-0001-6032-841X
http://orcid.org/0000-0001-6032-841X
http://orcid.org/0000-0001-6032-841X
http://orcid.org/0000-0001-6032-841X
http://orcid.org/0000-0001-6032-841X
http://orcid.org/0000-0001-7173-7972
http://orcid.org/0000-0001-7173-7972
http://orcid.org/0000-0001-7173-7972
http://orcid.org/0000-0001-7173-7972
http://orcid.org/0000-0001-7173-7972
http://orcid.org/0000-0003-2625-0553
http://orcid.org/0000-0003-2625-0553
http://orcid.org/0000-0003-2625-0553
http://orcid.org/0000-0003-2625-0553
http://orcid.org/0000-0003-2625-0553
http://orcid.org/0000-0003-4692-608X
http://orcid.org/0000-0003-4692-608X
http://orcid.org/0000-0003-4692-608X
http://orcid.org/0000-0003-4692-608X
http://orcid.org/0000-0003-4692-608X
http://orcid.org/0000-0001-7745-2513
http://orcid.org/0000-0001-7745-2513
http://orcid.org/0000-0001-7745-2513
http://orcid.org/0000-0001-7745-2513
http://orcid.org/0000-0001-7745-2513
http://orcid.org/0000-0003-4445-2159
http://orcid.org/0000-0003-4445-2159
http://orcid.org/0000-0003-4445-2159
http://orcid.org/0000-0003-4445-2159
http://orcid.org/0000-0003-4445-2159
mailto:czhao@bnl.gov
mailto:Karen.Chen-Wiegart@stonybrook.edu
www.nature.com/commsmat
www.nature.com/commsmat


Nanoarchitecture materials such as nanoporous metals are
versatile due to their unique properties including high
surface-area-to-volume ratios, light weights, and high

thermal and electrical conductivities1–3. Dealloying is a promising
method for fabricating nanoporous metals. During dealloying of a
parent alloy (A-B), one or more components (a metal/alloy B) are
removed with a dealloying agent (a metal/solution C), and the
remaining components form a bicontinuous structure through a
self-organizing process4. Recently, liquid metal dealloying (LMD),
where liquid metal is used as the dealloying agent (metal C), was
reintroduced to fabricate less noble nanoporous materials5,
including stainless steel6,7, silicon8,9, magnesium10, graphite11, α-
titanium5,12, β-titanium13, and TiVNbMoTa high entropy
alloys14. Solid-state metal dealloying (SSMD), or solid-state
interfacial dealloying (SSID), has been introduced to fabricate
nanoporous Fe, Fe-Cr, and α-Ti with a finer ligament, which can
be used to overcome the limitation of high fabrication tempera-
tures and handle liquid metal difficulties in LMD15–18. However,
the fundamental mechanisms leading to metal-agent dealloying
remain unclear, thereby creating challenges in defining a strategy
for materials design using metal-agent dealloying.

The material design principle of LMD proposed by Wada
et al.5 is primarily focused on the thermodynamic quantities of
the differences in the mixing enthalpies between the parent alloy
A-B (ΔHm

AB) and the dealloying agent (C) mixed with one of the
components from the parent alloy (ΔHm

AC or ΔHm
BC). The

general guideline is to have a negative mixing enthalpy of BC
(ΔHm

BC < 0) and ΔHm
BC < ΔHm

AB to provide a driving force to
dealloy B from AB, while utilizing a positive ΔHm

AC so that
mixing between AC would not be preferred. However, while such
criteria have been widely used to design new material systems,
they have not been consistent with experimental observations.
LMD also occurs when the mixing enthalpy between the elements
in parent alloys is more negative than the mixing enthalpy
between the soluble element and the dealloying agent
(0 > ΔHm

BC > ΔHm
AB), such as in TiVNbMoTa-Ni, C-Mn, Ti-Cu,

and Nb-Ni systems11,14,19. SSID was even reported in some sys-
tems with a positive mixing enthalpy between the soluble element
in the parent alloy and the dealloying agent (ΔHm

BC > 0 and
ΔHm

AB > 0)20.
These contradictions could have resulted from one of the three

factors or a combination of them. The first such factor is the
inaccuracy of the mixing enthalpy value available. The widely
used mixing enthalpy was proposed and calculated by the Mie-
dema model21. Although the Miedema model provides a way to
calculate the mixing enthalpies in binary alloy systems, its accu-
racy is limited when the mixing enthalpy is close to zero22. In
binary systems containing nonmetals or semimetals, a large
transformation energy calibration was needed23. The second
factor is that in considering the relative phase stability, the mixing
enthalpy may not be the right parameter to use. Instead, analysis
in the literature has shown that the thermodynamic stability of a
material should be defined by its Gibbs energy of
decomposition24. The third factor is the entropy contribution to
the Gibbs free energy. Conventionally, mixing enthalpy has been
treated as the dominant quantity for determining Gibbs free
energy. However, new studies indicate that configurational and
vibrational entropies can contribute to stabilizing/destabilizing
the solid solution25. Overall, the conventional criteria of using the
mixing enthalpy difference calculated from the Miedema model
to determine if a system can be dealloyed should be re-examined
to critically enable the fabrication of a wider range of elements
based on sound design principles.

Using machine learning (ML) algorithms to facilitate new
materials design is a rapidly growing research area. Com-
plementing computational simulation and theoretical modeling

techniques, ML methods promise to efficiently predict the pre-
sence of novel materials. Recent developments in the field include
a general ML framework for predicting inorganic materials26,
with a wide range of materials predicted. Depending on their
composition, crystal structure, and microstructures, ML methods
have been used to predict materials, such as high entropy alloys27,
shape memory alloys28, and thin-film metallic glasses29. Combi-
natorial thin-film synthesis has been used to achieve the pre-
paration of a great number of material compositions that could
not be realized previously. By combining combinatorial sample
synthesis with synchrotron characterization, the correlation of
material properties with composition to realize rapid materials
discovery becomes feasible30. A combination of iterative ML
prediction and combinatorial synthesis has also been applied for
the discovery of metallic glasses29. Recently, an autonomous
decision-making algorithm-driven scientific instrument was
developed; it minimized the number of measurements needed,
prevented the collection of redundant information, and thus
optimized the utilization of experimental and computing
resources31–33. The Gaussian-process-based decision-making
algorithm (gpCAM) was independently developed by
CAMERA34. The term “autonomous experiment” describes the
combination of automatic decision-making, analysis, instru-
mentation, and communication tools to create a closed-loop that
can make intelligent decisions during an experiment without
human interaction33,35. Here, during a synchrotron diffraction
experiment, gpCAM makes decisions based on the diffraction
intensity of the phase(s) of interest from the collected data, and
autonomously drives the next diffraction measurements to probe
regions with the highest uncertainty. Closed-loop concepts with
machine learning prediction and an autonomous experiment
were demonstrated36, and the development of carbon nanotube
growth was realized37. The ability to design self-driving materials
provides a promising pathway toward autonomously designing
and synthesizing novel materials38. In the field of dealloying
research, data mining and automated image analysis were intro-
duced to identifying coarsening mechanism39.

In this study, we established a workflow for designing nano-
pores/nanocomposites, simultaneously exploiting the advances in
ML prediction, combinatorial sample preparation, and autono-
mous synchrotron characterization. We applied several ML
methods to predict new ternary dealloying systems by employing
training and testing ML methods on randomly split published
dealloying data based on systems that exhibit successful deal-
loying behaviors. We used ML ranked important variables to
analyze the underlying materials design principles in the metal-
agent dealloying method. In total, the ML models predicted 132
ternary dealloying systems from the selected 16 metal elements. A
proof of concept for validating the ML method through thin-film
SSID experiments was tested by dealloying a Ti-Cu alloy with Mg.
Because the Ti-Cu/Mg system was reported previously40 with an
established preparation and characterization methods, it is thus
an ideal system to demonstrate new materials design and char-
acterization methodologies here. A combinatorial Ti-Cu thin film
was prepared to cover a wide range of parent alloy compositions.
Other processing parameters were analyzed, including the deal-
loying time, dealloying temperature, and amount of dealloying
agent. We applied synchrotron X-ray diffraction (XRD) char-
acterization to combinatorial dealloyed thin films to explore the
kinetics in Ti-Cu/Mg dealloying systems, including the phase
transition, crystallization, and parent alloy composition threshold
for dealloying. In addition, the crystallographic companion agent
(XCA) was used to automate the XRD analysis, and gpCAM for
autonomous experimental control was used to drive XRD char-
acterization at the synchrotron beamline for faster materials
discovery. This helped in overcoming the complexity and
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increasing the efficiency of the time-consuming validation
methods for new materials with a large parameter space.

Results and discussion
Workflow of an ML-augmented framework to design SSID.
The workflow includes the ML prediction of new ternary SSID
systems, combinatorial thin-film deposition of predicted systems,
and autonomously driven synchrotron X-ray characterization, as
shown in Fig. 1.

For ML prediction, ML methods are first trained based on
published dealloying systems from the literature and are then
employed to predict new dealloying systems. The prediction
involves classifying the elemental pairs into two categories:
miscible and immiscible, composing the elemental pairs into
potential ternary dealloying systems, and selecting the parent
alloy and the dealloying agent from each of the potential ternary
systems. Different ML methods lead to different results, and the
majority vote from the three ML methods with equal weight is
used towards ensemble prediction, which is then validated by the
experiment. The variables selected by the ML methods are used to
elucidate the design criteria in SSID thin films. Note that the
current training set was built on both SSID and LMD methods,
considering both methods are based on the selective dissolution
using a metallic dealloying agent. In the future, further refined
models that train these two sets of data separately can be
developed with more experimental results available in both
methods.

In the experiment, we used combinatorial thin-film deposition
to prepare dealloying systems and characterized them with
decision-making algorithm-driven autonomous synchrotron
X-rays. Efficient data collection enables the analysis of the
kinetics in multiple SSID thin-film systems, validation of the ML
prediction results, and improvement in the ML methods by
enriching the ML training sets with the experimental results. The
potential functional application is also expected to be tested at the
synchrotron after validating the dealloying in the predicted
systems.

The experiment and subsequent enrichment of the ML training
sets with experimental results are crucial for the following
reasons: (1) the reported dealloying systems were mostly designed
based on the mixing enthalpy difference calculated by Miedema’s

method, where testing and including more systems that did not fit
the mixing enthalpy difference would help in exploring the design
criteria, (2) to easily etch away the residual dealloying agent, the
reported dealloying agent was mostly limited to Mg and Cu,
leading to a bias in the training sets that may limit the prediction
accuracies of the ML methods, and (3) the reported dealloying
systems were primarily focused on successfully dealloyed systems,
whereas systems that cannot be dealloyed are still useful for
learning design criteria and training ML methods.

Machine learning prediction of ternary metal-agent dealloying
systems. The ML predictions geared towards answering two
research questions were broken down into two steps, as shown in
Fig. 2. In the first step, we trained the ML methods to identify the
miscible/immiscible pairs and then compose ternary dealloying
systems with two miscible pairs and one immiscible pair. In the
second step, we differentiated the parent alloy from the dealloying
agent in each ternary dealloying system that was composed in the
first step. In each of these two steps, three different ML methods

Fig. 1 Workflow of an ML-augmented framework to design SSID. The workflow includes the ML prediction of new ternary SSID systems (Xenonpy76,
pymatgen82, matminer77, and literatures78), combinatorial thin-film deposition of predicted systems, and autonomous synchrotron X-ray characterization
(XCA50, gpCAM34, and bluesky81 libraries). The characterization result is returned to enrich the ML training datasets.

Fig. 2 Schematic of ML predictions of miscible/immiscible pairs and
ternary dealloying systems. The two steps for predicting dealloying
systems by the ML method. The first step is to classify the miscible and
immiscible pairs and compose potential ternary dealloying systems. The
second step is to determine the parent alloy and the dealloying agent in
each of the ternary systems that are prescreened in the first step.
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were applied for classification. The selected ternary systems are
expected to form bi-continuous composite after isothermal
treatment at an elevated temperature to introduce solid-state
interfacial dealloying, as shown in Fig. 2. Here a two-step clas-
sification was employed. This was because the literature only
reports ternary systems that can introduce dealloying, without
information on systems that cannot introduce dealloying. This
hindered us to label ternary systems directly in a classification
process with supervised learning method. With the help of the
first classification step to construct the miscible and immiscible
pairs first, the plausible dealloying systems can be better predicted
with a more accurately defined searching space.

In the first step, we trained three different ML methods to
classify miscible and immiscible elemental pairs. The normalized
confusion matrices from each ML method on the testing sets after
variable selections are summarized in Supplementary Fig. 1. The
three methods showed good classification performance on the
testing sets; the accuracies of the random forest, XGBoost, and
SVM were 1.00, 1.00, and 0.84, respectively. Note that the high
accuracy is also related to the limited sample size, but the good
performance on testing sets showed no overfitting issue. Future
experiments can help to expand the dataset and achieve a more
robust model. As a comparison, the accuracy of determining
whether the mixing enthalpy is positive or negative to classify the
miscible/immiscible pairs from reported dealloying systems is
0.828. The top 10 most important variables ranked by SHAP
values for each of the three ML methods are shown in
Supplementary Fig. 2. It is not surprising that the mixing
enthalpy is the top, most important variable ranked by both ML
methods, as the reported systems from the literature were mostly
designed based on the mixing enthalpy. The solubility, which is
commonly used in determining dealloying systems, was also
highly ranked. It is clear that the high mixing enthalpy and low
solubility will lead to immiscibility. Other high-ranking variables,
such as the heat of formation, the energy at the ground state, the
formation energy, and the decomposition energy as the energy
above the convex hull of stable points, are common contributors
in the determination of the phase stability. The high rankings of
these features indicated that the ML methods rely heavily on
thermodynamic stability to determine miscible/immiscible pairs,
which is consistent with the scientific understanding of phase
stability and signifies the reliability of these ML methods.

The overlap of the new miscible pairs predicted by the three
ML methods is shown in Fig. 3a. Since each binary pair can only
be classified as a miscible or immiscible pair, the two classification
results are in a complementary relationship. We selected the pairs
that are commonly predicted from the majority (two or three)
ML methods as the classification results. Therefore, a total of 94
miscible and 27 immiscible pairs were selected to generate 169
potential ternary dealloying systems.

In the second step, we separately trained three different ML
methods to distinguish the parent alloy from the dealloying agent
using the training dataset with a 70% random split from the 31
reported ternary dealloying systems. The normalized confusion
matrices from the three ML methods are summarized in
Supplementary Fig. 3. All three ML methods showed good
classification performances in determining the parent alloys and
dealloying agents in the testing dataset, which is the remaining
30% of the random split, and the accuracies of the random
forest, SVM, and XGBoost methods in classifying the parent alloy
were 1.00, 0.95, and 1.00, respectively. In comparison, the
conventional method based on the mixing enthalpy difference
between the parent alloy and sacrificial element with a dealloying
agent showed an accuracy of only 0.516 for the 31 reported
ternary dealloying systems. We then removed the overlap of the
reported ternary systems from the classified A-B-C systems and

focused on the newly predicted ternary dealloying systems. The
overlap of classified ternary A-B-C systems with A-B as parent
alloy from mixtures A-B or B-C as parent alloy in the first step by
the three ML methods is shown in Fig. 3b. All the predicted
ternary dealloying systems are summarized in Supplementary
Table 1. The systems colored gray were voted higher by all three
ML methods, while other colored systems were voted higher by
only one of the two ML methods. Among the 132 predicted
systems, only 59 systems satisfy the mixing enthalpy criteria,
which are labeled in green and summarized in Supplementary
Table 2, and the rest 73 systems that did not satisfy the mixing
enthalpy criteria are labeled in orange in Supplementary Table 2.
Note that using the mixing enthalpy to determine whether a
system can be dealloyed is still valuable, but there are additional
cases to be considered and explored. Compared to the training
dataset in which 20 out of 31 (64.5%) of the dealloying systems
consist of Mg as the dealloying agent, there are only 26 out of the
132 (19.7%) of the predicted dealloying systems using Mg as the
dealloying agent. It shows the potential of using ML methods to
explore new dealloying systems.

After removing the highly correlated variables, the top 12 most
important variables selected by three ML methods by SHAP
values, are shown in Fig. 3c, and the corresponding descriptions
of each variable are summarized in Table 1. The variables are
ranked along the vertical axis by their influence on differentiating
the dealloying agent from the parent alloy. The horizontal axis
shows the SHAP values for classifying the feasible and infeasible
ternary dealloying systems. The color scale represents the feature
value from high (red) to low (blue). Here the solubility difference
between two elemental pairs was used to explain the meaning of
SHAP values. The system with a relatively low solubility
difference corresponds with a positive SHAP value, implies that
it tends to be able to form a ternary dealloying system. The top 10
most important variables ranked by SHAP values from all three
ML methods for variables selection are shown in Supplementary
Fig. 4a–c. The correlation matrix showing the correlation
coefficients between each pair of variables is summarized in
Supplementary Fig. 4d. Different from the variables ranked in
Step 1 to classify miscible/immiscible pairs, in Step 2 the mixing
enthalpy was no longer ranked highly by any of ML methods.

Other thermodynamic variables, such as the energy at the
ground state, heat of fusion, and heat of formation, were ranked
highly. The energy at the ground state is related to the relative
stabilities of the compounds41. The melting point is then
associated with the elemental diffusivity20. Furthermore, the
atomic volume was also ranked high by the ML methods; this is
consistent with our previous suggestion that the entropic
contribution should be included in the design criteria of the
metal-agent dealloying method40. Conventionally, the mixing
enthalpy has been treated as a dominant quantity due to the
identification of stable alloys, and the contribution of the mixing
entropy term for determining the total mixing Gibbs free energy
was considered to be less important for its relatively small value,
particularly in ordered structures25. In a solid solution, the
entropic contribution has a significant impact on the alloy phase
stability. Because we included both reported intermetallic and
solid solution dealloying systems in our training sets, the ML
methods were able to rank the important variables for both alloy
systems. Therefore, the limitation regarding the conventional
design criteria for limited intermetallic alloys can be resolved by
using the ML methods.

The number of predicted ternary dealloying systems were
organized by element A, where Fig. 3d depicts ternary systems A-B-
C. After removing the ternary system which cannot be distin-
guished by ML methods, as well as the systems that have been
previously reported, we obtained a total of 132 ternary systems that
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have been voted highly by at least two ML methods. Interestingly,
the predicted elements can be dealloyed by a large number of
dealloying systems that correspond to elements such as Cr and Nb
that have been reported and fabricated based on the metal-agent
dealloying method42. ML methods can not only provide an
approach to explore metal elements that have not been explored
but also enable the design of bicontinuous nanocomposites with
wider elemental compositions for the explored elements.

Combinatorial thin-film SSID and synchrotron XRD char-
acterization. Combinatorial thin-film deposition is used to prepare
a range of parent alloy compositions efficiently, which is critical for
analyzing the composition-dependent structural/morphological
evolution and validating the ML method predictions. With its high
brilliance X-ray, the synchrotron enables the characterization of a
large number of samples in a short time43. These two components
are critical in the materials discovery for metal-agent dealloying.

Fig. 3 The ML prediction result and corresponding SHAP value analysis. a The overlap of the miscible and immiscible pairs predicted by the three ML
methods, namely random forest, XGBoost, and SVM. b The overlap of predicted ternary dealloying systems from the three ML methods. c The 12 variables
which are ranked by their impacts on differentiating the dealloying agent from the parent alloy, as sorted by the random forest method. Variables ending
with 1 represent the properties of the first two elements in a ternary system, and those ending with 2 represent the properties of the last two elements.
d The number of predicted ternary dealloying systems organized by element A, where the parent alloy is A-B. The results are voted higher by at least two
ML methods.

Table 1 Description of the final 12 most important variables selected by three ML methods, using for determining parent alloy
(Step 2).

Variables used in ML methods Description

gs_energy_mean1 Average of the DFT energy per atom (raw VASP value) for the T= 0 K ground state from the first two elements in the
ternary system

gs_energy_mean2 Average of the DFT energy per atom (raw VASP value) for the T= 0 K ground state from the last two elements in the
ternary system

Solubility_diff The difference in the maximum equilibrium solubilities between the first two elements and last two elements in the
same ternary system

density_mean2 Average of the density at 295 K of the last two elements in the ternary system
atomic_number_mean1 Average of the number of protons found in the nucleus of an atom, from the first two elements in the ternary system
covalent_radius triple_mean2 Average of the number in the triple-bond covalent radii, as defined by Pyykko et al., from the last two elements in the

ternary system
solubility 2 The maximum equilibrium solubility between the last two elements
melting_point_diff 1 The difference in the melting point between the first two elements in the ternary system
melting_point_diff 2 The difference in the melting point between the last two elements in the ternary system
covalent_radius double_diff 2 The difference in the double-bond covalent radii, as defined by Pyykko et al., from the last two elements in the

ternary system
covalent_radius double_diff 1 The difference in the double bond covalent radii, as defined by Pyykko et al., from the first two elements in the

ternary system
icsd_volume_diff 1 The difference in the atomic volumes from ICSD database between the first two elements in the ternary system

Variables ending in 1 represent the variables of the first two elements in a ternary system, and those ending in 2 represent variables of the last two elements in the same ternary system. The variables
were collected from Xenonpy76, pymatgen82, matminer77, and literatures78. The names of the variables follow the convention as shown in these sources.

COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00303-w ARTICLE

COMMUNICATIONS MATERIALS |            (2022) 3:86 | https://doi.org/10.1038/s43246-022-00303-w |www.nature.com/commsmat 5

www.nature.com/commsmat
www.nature.com/commsmat


Here, the reason for choosing Ti-Cu (the A-B parent alloy)
dealloyed by Mg (the C dealloying agent) with the SSID method is
twofold. The first reason for this choice is that Ti-Cu dealloyed by
Mg has been reported only in bulk samples with discrete
compositions, while the precise dealloying composition threshold
is missing. Another reason for this choice is that the Ti-Cu-Mg
system does not adhere to the conventional mixing enthalpy
difference criteria, which states that the mixing enthalpy of Cu-
Mg is less negative than that of Ti-Cu21. In addition, the sample
preparation procedure for the Ti-Cu/Mg system has been well-
established. We can validate the new characterization methods in
the current work against the known the crystalline phases and use
the prior knowledge in the XCA method. Thus, the dealloying
behavior of the Ti-Cu-Mg system through the thin-film SSID
method was studied, also serving as a proof of concept for
establishing a method for future experiments with a wider range
of elements to (1) experimentally validate the ML method
predictions, and (2) acquire new datasets for ML method training
and testing, as illustrated by the workflow in Fig. 1. In the future,
the accuracy of each ML method can be validated with
experiments to determine the ML method with the highest
accurate probability, or to combine the prediction from the ML
methods each with a different weight factor based on the
accuracy. In addition, experimenters may choose a dealloying
system based on different design goals, such as elemental
compositions, cost of the materials, and properties of the
materials, etc.

A combinatorial Ti-Cu thin film was prepared by the
cosputtering method44. Compared to conventional samples with
discrete compositions, combinatorial samples provide an effective
way to study samples with compositional gradients. In addition,
we considered the influence of the processing parameters on the
dealloying combinatorial samples. A total of four parameters were
considered, including 3 dealloying times (7.5, 15, 30 and/or
60 min, depending on the dealloying temperature), 3 dealloying
temperatures (340, 400, and 460 °C), 2 thicknesses of the
dealloying agent, a Mg film, (250 and 450 nm), and a continuous
parent alloy composition (Ti ~20–80 at.% in a Ti-Cu alloy). The
layout with the conditions for combinatorial samples is shown in
Fig. 4a, and the setup of samples measured at the XPD beamline
is shown in Supplementary Fig. 5. The representative XRD result
after subtracting the background from glass substrate is shown in
Fig. 4b.

The scanning step size along the horizontal (X) axis was 2 mm,
and that along the vertical (Y) axis was 4.75 mm. A total of
34 × 18= 612 data points were collected upon scanning an
80.64 mm by 66 mm area. The interpolated diffraction peak
intensities from Cu2Mg (1 1 1), CuMg2 (0 8 0), and Cu2Mg (2 2 2)
overlap with CuMg2 (4 4 0) in grid scanning and are shown in
Fig. 5. Grid-scanned mapping was used to analyze the kinetics in
the Ti-Cu dealloying system and was also used as the ground
truth to validate the automatic XRD pattern analysis and
autonomous algorithm-driven characterization result, which will
be discussed in the next section.

Fig. 4 Sample layout for XRD measurement and XRD result. a Sample layout for a series of combinatorial thin-film samples with four controlled
parameters: parent alloy composition (Ti ~20–80 at.% in a Ti-Cu parent alloy), Mg dealloying agent film thickness (250 and 450 nm), dealloying time (7.5,
15, 30, and/or 60min, depending on the dealloying temperature) and temperature (340, 400 and 460 °C). The numbers in each grid indicate atomic
concentration of Ti in the parent alloy film. b XRD pattern from a sample dealloyed at 400 °C for 60min, after subtracting the glass background.

Fig. 5 Selected diffraction peaks and interpolated diffraction peak intensities from Cu2Mg (1 1 1), CuMg2 (0 8 0), and Cu2Mg (2 2 2) overlapped with
CuMg2 (4 4 0). The white color lines separate the regions with different dealloying temperature.
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The variation in the dealloying-generated Cu2Mg and CuMg2
phases with dealloying temperature is shown in Fig. 5. XRD from
the CuMg2 phase can be detected only below 460 °C, and XRD
from the Cu2Mg phase can be detected only when dealloying at
460 °C with thick Mg. Such a phase distribution is consistent with
the phase transition in Cu and Mg interdiffusion. Arcot et al.
showed that with excess Cu in the system, CuMg2 transformed to
Cu2Mg when the annealing temperature was >380 °C45. When a
small amount of oxygen is distributed in the sample, crystal phase
formation can be increased over a range of more than 200 °C.
Knowing the dealloying-generated phase distribution, we used
CuMg2 and Cu2Mg phases together to determine the dealloying
progress.

The parting limit is the composition threshold of the parent
alloy; when the concentration of the sacrificial component (B)
falls below this threshold, the parent alloy cannot be fully
dealloyed. While the sacrificial element composition in the parent
alloy is above the parting limit, an atomic-scale network of
sacrificial components (B) runs through the entire structure of the
parent alloy for B element dissolution. This dissolution process is
called a percolation dissolution mechanism in dealloying46. The
theoretical values of the site percolation threshold for face-
centered cubic (FCC) and hexagonal close packed (HCP)
structures have been determined to be ~20 at.%, where
~24.5 at.% has been reported for body-centered cubic (BCC)
structures47,48. Although few systems, such as the Cu-Zn system,
showed a parting limit that is close to the theoretical percolation
limit of ~20%, more common systems, such as Au-Ag and Au-
Cu, showed a much higher parting limit of ~55%.

We used the boundary of the dealloying-generated crystalline
phase to search for the parting limit in the thin-film SSID Ti-Cu
system. Since only crystalline Cu2Mg and CuMg2 phases were
detected from the XRD pattern, their distributions were used to
find the parting limit. In the samples dealloyed with a thin Mg
layer, the Cu2Mg and CuMg2 phases can be found based on
samples with a sacrificial element Cu of 20–80 at.% in the parent
alloy. Such a composition range matches the theoretical
percolation limit. It is interesting that in the samples dealloyed
by the thicker Mg films, a clear decrease in diffraction peak
intensity can be found when the sacrificial element composition is
below ~35 at.% in the parent alloy, as indicated by vertical red
dashed lines in Fig. 5. Since thick Mg layer samples provide more
material for dealloying, the difference cannot be induced by
limited diffusion materials. In addition, the percolation threshold
is related to the atomic coordination environment49, and a
relatively thin layer is not expected to change the environment.
The differences in dealloying-generated crystalline phases in
thinner vs. thicker Mg films may be attributed to geometric
differences in the thin films, although further kinetics analysis is
needed.

ML-augmented synchrotron characterization: ML-informed
automated (XCA) and ML-driven autonomous experiments
(gpCAM). A neural-network-based automated XRD pattern
analysis method, XCA50, and a Gaussian process regression-based
algorithm, gpCAM32, were tested separately for ML-informed
automated and autonomous characterization. The goal here is to
develop a methodology for rapidly validating the ML prediction
results through experiments and enriching the training datasets
for ML methods.

The working principle of XCA is that an ensemble model is
trained from synthetic datasets by inputting the CIFs of expected
phases and subsequently generates the existence probability of a
given phase given the diffraction pattern. The trained XCA model
can be applied to analyze the collected XRD patterns in real time.
In our study, the XCA method first generated a synthetic dataset
from the CIFs of the expected Ti, Cu2Mg, CuMg2, and Mg phases
with a range of experimental variations, such as the diffraction
instrument parameters, peak shape, sample texturing, and offset.
The ensemble of CNNs were trained based on this synthetic
dataset. Then, the trained model was applied to analyze the grid-
scanned results on combinatorial Ti-Cu-Mg samples and the
output existence probability of Ti, Cu2Mg and CuMg2 from each
input diffraction pattern. To analyze the accuracy of the XCA
method, we overlapped the XCA-generated existence probability
of each phase with the interpolated intensity of a key diffraction
peak interest for each phase from the grid scan, as shown in
Fig. 6. The layout discrepancy between the XCA-generated
probability distribution and grid-scanned data points is related to
the sample layout. The XCA focused only on the samples with
calibrated compositions, while grid scans covered the full
dimension of the samples, as shown in Fig. 5. Overall, the
distribution of the high probabilities of Cu2Mg and CuMg2
phases matches well with the distribution of strong diffraction
intensity from the grid-scanned result. Crystalline Ti was barely
detected in the dealloyed sample, but XCA generated relatively
high existence probabilities among a wide compositional range of
the dealloyed samples. This deviation stems from the discrete
probability distribution being confined to only the input phases
and no other possible impurities. The challenge of classifying out-
of-distribution data, and small amounts of phases in samples
need to be considered carefully in the future. Overall, the accuracy
in detecting a large amount of Cu2Mg and CuMg2 phases
demonstrated that the XCA is a powerful tool for analyzing the
evolution of the phase during the dealloying processes. In
addition, the XCA holds great advantages in considering the
preferred orientation, peak shifting, and phase mixtures, which
are critical for characterizing thin-film materials50. The XCA
method provides an additional tool for future experimental
validation and is thus valuable to be included in the current
materials discovery workflow as a proof-of-concept. The data-

Fig. 6 The distribution of the XCA-generated phase probability, represented by round points in a gray-to-blue color scheme, overlayed on the
interpolated intensity of the designated diffraction peak in the grid-scanned result, represented by a yellow-to-purple color scheme. The diffraction
analysis was based on Cu2Mg (1 1 1), CuMg2 (0 8 0), and Ti (1 1 0).
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collection points in autonomous characterization driven by an
XCA-generated probability are summarized in Supplementary
Fig. 6.

We also tested the gpCAM algorithm, which autonomously
decides on future measurements and is critical in driving
experiments in the multidimensional parameter space. gpCAM
was developed based on Gaussian-process regression and we
augmented the GP posterior variance with local information and
measurement costs. In this experiment, gpCAM considers the
absolute value of the gradient to find regions where the diffraction
intensity rapidly changes as local information and the total time
required to acquire a new datapoint as the measurement cost. Here,
gpCAM aims to search the phase boundary based on the intensities
of the diffraction peaks of dealloying-generated Cu2Mg and
CuMg2. The selected diffraction peak was previously characterized
as an overlapping peak from Cu2Mg (3 1 1) and CuMg2 (3 5 1), and
the peak in the q range is 3.047 Å−1–3.106 Å−1, where q is the
momentum transfer of the scattered wave vector to the incident
wave vector. By comparing the peak intensity distributions from
Cu2Mg (1 1 1) and CuMg2 (0 8 0), we were able to determine that
this diffraction peak is mainly attributed to the Cu2Mg phase, thus
corresponding to Cu2Mg (3 1 1).

Compared to the grid scan in which 612 points were collected,
in the gpCAM-driven autonomous experiment, only 133 points
were collected. With only ~21.7% of the data points, the
autonomously driven analysis was able to successfully determine
the boundary of the Cu2Mg phase by means of the key processing
parameters. The intensity and distribution of gpCAM data- and
mapping of the Cu2Mg (3 1 1) diffraction peak intensity in the
grid scan are shown in Fig. 7. The collection trajectory, intensity
of the Cu2Mg (3 1 1) diffraction peak in the gpCAM-driven
characterization is shown in Supplementary Fig. 7. A large
number of collected points were distributed at the boundary
between 400 °C for 60 min and 460 °C for 7.5 min in both thin
and thick dealloying agent samples. This result indicates that
gpCAM determined the Cu2Mg phase transition distributed
between 400 °C and 460 °C, matching the grid scan results.
Overall, this match of the phase boundary from grid-scanned
mapping with gpCAM collected points proves the capability of
gpCAM in analyzing the phase transition in SSID.

It should be noted that while gpCAM determines the boundary
based on the diffraction peak intensity calculated from a fixed q
range, it could be replaced by the phase probability result from

the XCA method. From each collected XRD pattern, the XCA
generates the probability of an existing phase, which can be used
to replace the diffraction peak intensity in the gpCAM algorithm.
gpCAM searches through the phase distribution based on the
probability of a given phase existing at each location. In such
circumstances, we can prevent XRD pattern variation in thin-film
samples, such as a strain-induced phase shift, calculate the
compositional variation according to Vegard’s law, accurately
determine the dealloying-generated phase intensity, and effi-
ciently analyze the dealloying results. To fully realize a closed-
loop approach, future test on the systems predicted in this work
could consider different design criteria and cost functions based
on the goal of the materials design. For instance, other dealloying
agents beyond Cu and Mg could be prioritized to create novel
systems. Alloys with compositions not following the conventional
mixing enthalpy differences would be of fundamental research
interests. For particular applications, the cost of materials and
processing constraints such as temperature can be considered.

Conclusion
An ML approach to dealloying and designing nanoporous/nano-
composite materials is first introduced. The proposedML ensemble
pipeline consisting of three ML methods was able to predict 132
ternary dealloying systems from 16 selected metal elements after
training with published dealloying systems. In addition to elements
that have never been reported by the dealloying method, more
elemental combinations have been introduced to pave the way for
the development of nanocomposites and nanoporous materials
with a broader range of applications. The important variables
ranked by the ML methods, such as energy at the ground state,
fusion heat, and heat formation, indicate that thermodynamic
stability is the key to designing dealloying systems. In addition,
atomic volume differences that contributed to entropy changes
were also ranked highly by the MLmethods. TheMLmethods have
demonstrated their potential to overcome the limitations of con-
ventional design criteria in intermetallic alloys and can be readily
applied to a wider range of alloys.

The kinetics in Ti-Cu-Mg dealloying systems was studied using
combinatorial thin-film deposition and synchrotron XRD char-
acterization. The relation between the phase transition of
dealloying-generated Cu2Mg and CuMg2 phases and the deal-
loying conditions was discussed. Relation between the dealloying-

Fig. 7 The data-collection distribution of the autonomous experiment driven by the gpCAM algorithm overlayed on the interpolation of the diffraction
peak intensities from Cu2Mg (3 1 1) and CuMg2 (3 5 1). a The sample with thin Mg layer, b The sample with thick Mg layer. Note that the colormap in
grid-scan and gpCAM are different for better visualization. (For video sequence of diffraction peak intensity analysis see Supplementary Movie 1–2).

ARTICLE COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00303-w

8 COMMUNICATIONS MATERIALS |            (2022) 3:86 | https://doi.org/10.1038/s43246-022-00303-w |www.nature.com/commsmat

www.nature.com/commsmat


generated phase and the film thickness and parent alloy com-
position was analyzed.

A neural-network-based automated XRD pattern analysis
method, XCA, and a Gaussian process regression-based algo-
rithm using the gpCAM software were validated through the
characterization of Ti-Cu-Mg dealloying systems. The accuracy of
XCA analysis in identifying the Cu2Mg and CuMg2 phases gen-
erated from dealloying and the efficiency of finding the Cu2Mg
phase boundary through gpCAM were demonstrated. In the
future, validated ML-informed automated pattern analysis and
the ML-augmented decision-making algorithm can be combined
to further the development of the autonomous experimental
methods, where a range of automatic decision making, analysis,
instrumentation, and communication tools are combined to
create a closed-loop that can make intelligent decisions during an
experiment without human interaction.

The ML-augmented workflow built in this work will sig-
nificantly improve data-acquisition accuracy and rate, which will
pave the way for rapidly validating the ML predictions, enriching
the ML training set with experimental results, improving the
accuracy of the ML methods, and developing nanoporous/
nanocomposite materials. Moreover, such a workflow can be used
to design a wider range of solid-state materials with limited
published results.

Methods
Machine learning prediction of ternary systems for metal-agent dealloying.
To construct a ternary system where the dealloying of a parent alloy by a dealloying
agent can occur, two questions must be answered. First, among all possible ternary
systems, how do we identify promising ternary systems that may display dealloying
behavior with two miscible pairs and one immiscible pair of elements? Here we
simplify the question and exclude the potential ternary systems that composed of
three miscible pairs or composed of one miscible pair and two immiscible pairs.
Second, within a ternary system, how do we discern which element will act as a
dealloying agent in the immiscible pair? Note that the other element is then the
remaining element left within the parent alloy. While for both questions, ther-
modynamics can provide guidelines for identifying possible answers, these two
questions are essentially classification problems that can also be addressed using
ML methods.

Based on the two questions outlined above, we divided the ML-based
classification process for identifying dealloying systems into two steps. In Step 1,
ML methods were trained to classify the published miscible and immiscible pairs.
Once trained, the first-step ML classifier can be applied to classify new elemental
pairs into miscible and immiscible pairs. Two miscible pairs and one immiscible
pair were then combined to form ternary systems. In Step 2, ML methods were
trained to distinguish ternary systems that will lead to dealloying process. This was
done by identifying systems with the A-B combination as a parent alloy from a
mixture of ternary systems where either A-B or B-C combination is the parent
alloy; both new systems satisfy the criterion of Step 1 in that they contain a
composition of two immiscible pairs and one miscible pair. However, only the
systems with A-B as parent alloys will lead to the dealloying process. Once trained,
the second-step ML classifier can identify the parent alloy and dealloying agent
from new ternary systems.

To establish ML methods to address the above classification problems, training
and testing datasets were collected from a total of 21 different peer-reviewed
papers, including 13 discussing the LMD method8,10,11,14,19,51–63, 4 papers
addressing the SSID method17,20,64,65, and 4 papers examining the aqueous
solution dealloying (ASD) method66–69, listed in Supplementary Table 3. These
data were then used to classify miscible/immiscible pairs. Excluding the ASD
systems, only the training and testing datasets from metal-agent dealloying systems
were used for classifying parent alloys and dealloying agents. Each of the ternary
dealloying systems is composed of three elements, A, B, and C, where the parent
alloy elements A and B are miscible. In addition, the sacrificial element (B) and the
dealloying agent (C) are miscible, while the remaining element (A) and the
dealloying agent (C) are immiscible. We organized all the reported dealloying
systems to follow the A-B-C sequence, specifically to distinguish dealloying agent C
from the remaining element A. To identify miscible/immiscible pairs, the organized
A-B-C ternary systems were separated into A-B and B-C miscible pairs, as well as
A-C immiscible pairs. Some reported systems have more than two elements in the
parent alloy. Following the miscible/immiscible relation, these systems (A1A2…
An)-B-C were separated into multiple miscible pairs (A1B, A2B… AnB, BC) and
immiscible pairs (A1C, A2C… AnC) and placed into the miscible/immiscible
dataset. In addition, we also separated (A1A2…An)-B-C into A1-B-C, A2-B-C…
An-B-C ternary systems, which were included in the training and testing datasets
for classifying parent alloys and dealloying agents.

We first conducted the training and testing of the ML methods for both steps
using the data from the literature. In the first step, we classified all reported
dealloying systems into miscible and immiscible pairs. Two types of elemental parts
are labeled as miscible pairs: (1) the parent alloy elemental pair, and (2) the pair of
sacrificial element and dealloying agent. The pair of the residual element and the
dealloying agent is labeled as immiscible pair. In our dataset, we summarized 64
pairs, including 43 miscible and 21 immiscible pairs. To train each ML method, the
dataset was randomly divided, where 70% was allocated for training and 30% was
allocated for testing classifier performance. To increase the reliability of the ML
predictions, we used three ML methods from the scikit-learn library70: random
forest71, support vector machine (SVM)72, and XGBoost73. We trained the ML
methods with all variables and used the SHAP (SHapley Additive exPlanations)
value, based on a game theoretic approach for explaining outputs of ML models to
select variables74. The union set of the top five important variables from each ML
method was selected, leading to a total of 10 valuables. Then we removed two
highly correlated variables (correlation coefficients r > 0.8) based on the correlation
matrix. The final 8 variables selected were used to train the three ML methods with
one more iteration, listed in Supplementary Table 4. The trained ML classifier was
then applied to predict new miscible and immiscible pairs generated from
16 selected elements, including Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr,
Nb, Mo, and Ta. The fabrication of half of the selected elements has not been
reported based on the metal-agent dealloying method, according to McCue et al.’s
report42. Although all the three ML methods showed great performance in both
training and testing process, they showed different prediction results on new pairs.
We used the majority vote from the three ML classifiers with equal weight as the
ensemble prediction result75 so that the common predictions from at least two ML
classifiers were included, while the prediction from only one ML classifier without
intersections with the other ML classifiers’ prediction was not included in the final
classification result. The newly classified miscible and immiscible pairs derived
from the ensemble prediction results were used to build new potential ternary
dealloying systems A-B-C, where A-B and B-C are two miscible pairs and A-C is an
immiscible pair.

In Step 2, we then introduced the second classification step to identify the
parent alloy and dealloying agent in the potential ternary systems, as classified in
Step 1. The parent alloy and dealloying agent were not identified in the new ternary
A-B-C dealloying system in the first step. In Step 1, we did not determine the
relative strength of the miscibility. In Step 2, we then identified whether A-B or B-C
had a stronger tendency to mix; in other words, we classified whether A-B or B-C
was the parent alloy. From the published result, we knew that the C element had a
stronger tendency to combine with the B element so that the A element could not
dealloy the B-C pair. In Step 2, we classified the ternary alloy systems where B-C
combination is the parent alloy as systems that cannot be dealloyed. A total of
62 systems, including 31 feasible systems, were reported as feasible ternary systems
with A-B combination as parent alloy; the 31 corresponding infeasible ternary
systems with B-C combination as the parent alloy were randomly split, resulting in
70% of the system allocated for training and 30% for testing. The elemental
distribution in training and testing dataset in the step 1 and 2 are summarized in
Supplementary Fig. 8. We then separately trained 3ML methods (random forest,
XGBoost, and SVM) to classify feasible and infeasible systems. The variables
selection based on the SHAP values were conducted following the similar
procedure as in step 1, except that the top eight important variables were selected
from each ML method, leading to a total of 18 in the union set. After removing six
values with r > 0.8, a total of 12 final variables were selected (Table 1). The trained
classifiers were then applied to differentiate ternary systems with A-B or B-C as
parent alloy that were composed in the first step.

The variables that were input into the ML methods to classify and predict new
dealloying systems were sets of quantitative attributes describing the materials. We
selected 55 relevant element-level properties and electronic structure attributes
available in the Python library XenonPy76, including 21 calculated elemental
properties developed for a general machine learning framework for inorganic
materials26. To avoid bias from training sets that restricted dealloying agents to
specific elements (Cu and Mg), we focused on the relationships within elemental
pairs rather than the individual element properties. We computed the means and
absolute differences of each pair’s 52 attributes and used them as variables in the
ML methods. In addition, we included two key variables, mixing enthalpy and
maximum equilibrium solubility in binary systems, that are conventionally used to
classify dealloying systems. The mixing enthalpies of all elemental pairs were
calculated based on Miedema’s method21 and are available from the Python library
Matminer77. The maximum equilibrium solubilities of the first 83 elements in the
periodic table were collected from the literature78. We also included
thermodynamic attributes to determine the compound stabilities, including the
formation energy and energy above the convex hull (approximate as
decomposition enthalpy)24, which are available in the Matminer library77. Since the
compositions of the dealloying-generated B-C phases were not reported in all the
literature, we did not consider a specific composition in each A-B-C system. We
generalized the dealloying for compositional attribution and included only the
minimum and maximum values of the formation energy and energy above the hull
among each binary pair here. All variables were summarized in Supplementary
Table 5.

To select the optimal ML methods, we evaluated the performances using
fivefold cross-validation for the three different ML methods in the scikit-learn
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library70, including random forest, SVM, and XGBoost. Hyperparameters,
including the number of estimators and maximum depth in XGBoost and random
forest, and C values in SVM were selected through a fivefold cross-validated
randomized search79. The confusion matrix were used to assess each method’s
classification performance. Although the confusion matrix from three ML methods
all showed a good classification performance, and the majority of the predictions
from three ML methods overlapped, there is still a small number of predictions
from each ML method disagrees with each other. Because of the limited data
availability, and clustered data at Ti, Cu and Mg elements, we further validated the
trained ML methods with the leave-one-element-out method in both steps. The
cross_val_score function available in the scikit-learn package was applied with 30
fold cross-validation, and the output accuracies of trained ML methods were
averaged and collected. In step 1, the averaged accuracy for the random forest is
0.90, the accuracy for XGBoost is 0.89, and the accuracy for SVM is 0.92. In step 2,
the accuracy for the random forest is 0.92, the accuracy for XGBoost is 0.87, and
the accuracy for SVM is 1.00. The result indicates that ML method is reliable.

Combinatorial thin-film deposition and synchrotron characterization. Bor-
osilicate glass slides (TedPella) with an initial area of 114 × 159mm2 and a
thickness of ~200 µm were cut down to 72.5 × 72.5 mm2 in size for the deposition
substrate. Before deposition, the glass slides were cleaned with isopropyl alcohol
and deionized water, followed by treatment in an oxygen-plasma environment. A
Ta film (99.95% purity, 3” diameter, and 0.125” thickness target from Kurt J.
Lesker) was deposited by direct current (DC) sputtering as a barrier layer. A
combinatorial film with a compositional gradient of TixCu1−x (x= 20–80 at.%) was
prepared by cosputtering Ti and Cu targets (2” diameter and 0.125” thickness, Kurt
J. Lesker) at the University of Maryland44. A Mg sputtering target (99.95% purity,
3” diameter, and 0.25” thickness from Kurt J. Lesker) was used as the dealloying
agent. The deposition of the homogeneous barrier layer Ta film and dealloying
agent Mg film was conducted at the Center for Functional Nanomaterials (CFN) in
Brookhaven National Laboratory (BNL). For the Ta and Mg sputtering targets, a
cleaning protocol that involved sputtering the target for 5–10 min with the sput-
tering shutter closed was conducted to remove the surface oxides. Ta, Ti-Cu, and
Mg films were sequentially sputtered onto borosilicate glass slides. Two types of
samples with different thicknesses of Mg were prepared: one with a 250 nm thin
Mg layer and another with a 450 nm thick Mg layer. The thickness of the rest layer
was consistent in both types of samples: 80 nm for Ta and 220 ± 35 nm for Ti-Cu.

After deposition, the samples were heated by rapid thermal processing (RTP-
600S, Modular Process Technology Corp.) for an isothermal heat treatment to
introduce dealloying. All heat treatment processes were conducted in a reduced gas
atmosphere (4 vol.% hydrogen and 96 vol.% argon) to prevent oxidation during the
heat treatment. The samples were heated from room temperature to the designated
dealloying temperature in 30 s and kept at the dealloying temperature for a
designated duration of time. The samples were then cooled to room temperature in
~150 s. The heating temperature and time were determined based on the estimated
diffusion length between Cu and Mg, as calculated based on the diffusion data in
the literature80.

X-ray diffraction analysis was conducted at the X-ray powder diffraction (XPD)
beamline 28-ID-2 at the National Synchrotron Light Source II (NSLS-II) in BNL.
The incident X-ray beam energy was 66.16 keV, with a corresponding X-ray
wavelength of 0.1874 Å. The beam size was 0.5 mm × 0.5 mm. A large-area X-ray
detector with 2048 × 2048 pixels was used to measure the XRD patterns, where the
size of each pixel was 200 × 200 µm2. The distance from the sample to the detector
was first calibrated with a Ni standard and determined to be 1356.038 mm. The
exposure time for collecting each XRD pattern was 60 s. Phase identification based
on the XPD results was carried out by comparing the peak locations to those of
reference compounds using the commercial software package Jade (Materials Data,
Inc. Jade 9). The analysis of diffraction peak intensity was based on the integral of
peak intensity after removing the background. The background was fitted by linear
interpolating the averaged values of three points on both sides of a given diffraction
peak. For instance, for the Cu2Mg (311) peak, we integrated the peak intensity with
the corresponding q range from 2.925 to 2.974 Å−1. The diffraction background
was removed based on a linear interpolation of the peak intensity at 2.925 and
2.974 Å−1, where values were averaged from three data points at the immediately
left of 2.925 Å−1 and right of 2.974 Å−1 respectively.

Automatic XRD pattern analysis and autonomous characterization. A
ensemble of feed forward convolutional neural networks were applied to auto-
matically analyze the XRD pattern50. These models were built using the Crystal-
lography Companion Agent (XCA) package, and trained on synthetic datasets by
inputting the crystallographic information file (CIF) of the expected phases and
created an output of probabilistic classifications. The XCA input included Mg,
Cu2Mg, CuMg2, and Ti CIFs collected from the materials project. The autonomous
experiment was driven by gpCAM to autonomously detect phase transformation
and drive the XRD data-collection process31.

Bluesky, a library for experimental control and scientific data collection, was
used for synchrotron characterization81. This library supports the collection and
analysis of data in real time, enabling the incorporation of XCA and gpCAM into
the ML-augmented materials design process.

In the autonomous characterization process, the experimental control was
coordinated based on two Python programs: bluesky control of the XPD beamline
and gpCAM implementation of Gaussian-process-based optimization for decision
making. Although XCA performed automated XRD pattern analysis separately in
this experiment, it demonstrated the feasibility of combining this step with
autonomous experimental control; such control involves bluesky controlling the
beamline, XCA analyzing the pattern, and gpCAM deciding the measurement
point from the XCA-generated probability.

Data availability
Data contained in this manuscript are available from the corresponding authors upon
reasonable request.

Code availability
The codes that support the findings of this study are available from the corresponding
author upon reasonable request.
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