Skip Navigation
Search

Faculty


Ming-Yu Ngai, Associate Professor

Ming-Yu Ngai

B.S. University of Hong Kong/UC San Diego, 2000-2003
Ph.D. University of Texas, Austin, 2004-2008

Croucher Foundation Post-doctoral Fellow, Stanford University, 2009-2011
Post-doctoral Associate, Harvard University, 2011-2013

767 Chemistry
Phone: (631) 632-2641
Email: ming-yu.ngai@stonybrook.edu

The Ngai Group Website

Research

The Ngai lab focuses on the establishment of catalytic platforms to edit and prepare organic molecules efficiently and selectively. We combine detailed experimental and computational studies to understand reactivity and mechanisms with which to guide the design of new catalysts and the development of novel applications in organic, bioorganic, and medicinal chemistry, and (ii) identifying and developing new radiotracers for Positron Emission Tomography (PET) imaging to elucidate disease mechanisms, identify drug targets, assess treatment efficacy, and accelerate drug discovery and development. 

Our research programs are multidisciplinary, covering organic and organometallic chemistry, medicinal chemistry, photochemistry, radiochemistry, and biomedical imaging.

Molecular Valorization via Fluorine Chemistry

Fluorine has made a fundamental paradigm change in life science research and medicinal chemistry over the last 50 years. Fluorinated groups are often incorporated into organic molecules to enhance their lipophilicity, bioavailability, and thermal, chemical, and metabolic stability. However, there is a significant gap between the needs of the chemical and pharmaceutical industries and the effectiveness of currently available technologies for the installation of fluorinated functional groups. This program aims to bridge this gap by developing bench-stable, easy-to-handle reagents and establishing operationally simple, scalable reactions to facilitate the incorporation of various fluorinated groups into complex molecules. Accomplishment of these goals will accelerate drug/agrochemical discovery and development, improve the quality of health care products, and create new materials for biomedical and energy applications.

Excited-State/Photoredox Catalysis in Organic Synthesis

Excited-state catalysis, a process that involves one or more excited catalytic species, has emerged as a powerful tool in organic synthesis because it allows access to the excited-state reaction landscape for the discovery of novel chemical reactivity. This research program seeks to study and exploit this catalytic mode to (i) facilitate carbon-carbon and carbon-heteroatom bond formation and (ii) rapidly modify and construct complex molecules. Accomplishment of these goals will establish new synthetic strategies that lead to otherwise poorly accessible or unobtainable molecular architecture and advance fundamental knowledge in excited-state and radical chemistry.

Molecular Editing of Carbohydrates

Carbohydrates are indispensable in many biological processes and have implications in numerous diseases such as cancer, viral infections, diabetes, and neurological disorders. Yet, selective modification and synthesis of carbohydrate derivatives remain a significant challenge in organic synthesis. This research program aims to develop new synthetic technology that can edit carbohydrates site-selectively and efficiently. Accomplishment of this goal will generate new glycomimetics to tackle fundamental questions in glycobiology and to design and develop new diagnostic probes, therapeutic agents, and vaccines against cancer and infectious diseases.

Positron Emission Tomography (PET) Tracers for the Study of Human Diseases

Chronic inflammation is a common feature of numerous severe human diseases, including cancer, diabetes, Alzheimer's disease, and various neurological disorders. Understanding the mechanisms that govern inflammation in tissues and diseases should provide new strategies for therapeutic intervention, and accelerate drug discovery and development. Glycogen synthase kinase 3 (GSK-3) is a key protein kinase regulating numerous cellular functions, which has been implicated in governing inflammatory processes. Our research program aims at developing GSK-3β imaging probes for positron emission tomography (PET), a non-invasive in vivo imaging technology using radioactive tracers to visualize, characterize, and quantify physiological processes at the cellular level. This in vivo imaging technology will enable researchers to directly study GSK-3β. Our ultimate goal is to translate this technology to human PET imaging to elucidate disease mechanisms, identify drug targets, assess treatment efficacy, and accelerate drug discovery and development.

Selected Publications

“Nickel-Catalyzed Radical Migratory Coupling Enables C-2 Arylation of Carbohydrates” Zhao, G..; Yao, W.; Kevlishvili, I.; Mauro, J. N.; Liu, P.; Ngai, M.-Y.* J. Am. Chem. Soc. 2021, 143, 8590.

“Excited-State Palladium-Catalyzed 1,2-Spin-Center Shift Enables Selective C-2 Reduction, Deuteration, and Iodination of Carbohydrates” Zhao, G..; Yao, W.; Mauro, J. N.; Ngai, M.-Y.* J. Am. Chem. Soc., 2021, 143, 1728.

“Redox-Neutral TEMPO Catalysis Toward Direct Radical (Hetero)Aryl C-H Di- and Trifluoromethoxylation” Lee, J. W.; Lim, S.; Maienshein, D. N.; Liu, P.*; Ngai, M.-Y.* Angew. Chem. Int. Ed., 2020, 59, 21475.

“Photocatalytic Radical Aroylation of Unactivated Alkenes: Pathway to β-Functionalized 1,4-, 1,6-, and 1,7-Diketones” Sarkar, S.; Banerjee, A.; Yao, W.; Patterson, E. V.; Ngai, M.-Y.* ACS Catal., 2019, 9, 10358.

“β‐Selective Aroylation of Activated Alkenes by Photoredox Catalysis” Lei, Z.; Banerjee, A.; Kusevska, E.; Liu, P.*; Ngai, M.-Y.* Angew. Chem. Int. Ed., 2019, 58, 7318.

“Catalytic Radical Difluoromethoxylation of Arenes and Heteroarenes” Lee, J. W.; Zheng, W.; Morales-Rivera, C. A.; Liu, P.*; Ngai, M.-Y.* Chem. Sci., 2019, 10, 3217.

“Catalytic C−H Trifluoromethoxylation of Arenes and Heteroarenes” Zheng, W.; Morales-Rivera, C. A.; Lee, J. W.; Liu, P.*; Ngai, M.-Y.* Angew. Chem. Int. Ed., 2018, 57, 9645.

“β-Selective Reductive Coupling of Alkenylpyridines with Aldehydes and Imines via Synergistic Lewis Acid/Photoredox Catalysis” Lee, K. N.; Lei, Z.; Ngai, M.-Y.* J. Am. Chem. Soc., 2017, 139, 5003.

“Access to a New Class of Synthetic Building Blocks via Trifluoromethoxylation of Pyridines and Pyrimidines” Feng. P.; Lee, K. N.; Lee, J. W.; Zhan, C.; Ngai, M.-Y.* Chem. Sci., 2016, 7, 424.

“Trifluoromethoxylation of Arenes: Synthesis of ortho-Trifluoromethoxylated Aniline Derivatives by OCF 3-Migration” Hojczyk, K. N.; Feng, P.; Zhan, C.; Ngai, M.-Y.* Angew. Chem. Int. Ed., 2014, 53, 14559.