Becoming a Chemistry Teacher
Three Routes to New York State Certification

Stony Brook University offers three programs registered and approved by the New York State Education Department for individuals seeking New York State certification to teach chemistry in secondary schools, grades 7 – 12.

The undergraduate route to certification requires completion of a Bachelor of Arts in Chemistry degree or a Bachelor of Science in Chemistry degree with the Teacher Preparation option. (See page 2)

The graduate route to certification requires completion of the Master of Arts in Teaching degree, as well as completion of an undergraduate degree in chemistry (the equivalent of a Stony Brook University undergraduate chemistry degree). (See page 6)

The combined route to certification in which students obtain both the Bachelor of Science in Chemistry and Master of Arts in Teaching Chemistry degrees in 5 years, i.e., one additional year beyond the bachelor degree alone. (See page 9)

The Stony Brook program is aligned with the standards of the National Science Teachers Association (NSTA), National Council for Accreditation of Teacher Education (NCATE), the National Educators Association (NEA) Code of Ethics, Interstate New Teacher Assessment and Support Consortium (INTASC), and the National Board for Professional Teacher Standards (NBPTS).

For advisement, contact Chemistry Education Advisor, Dr. Susan Oatis, (631) 632-1571 (susan.oatis@sunysb.edu), or stop by the Department of Chemistry Office in Room 104, Chemistry Building. For advisement on education courses, contact Dr. Keith Sheppard, Director of the Science Education Program, (Keith.Sheppard@stonybrook.edu), (631) 632-2989, or Linda Padwa, (631) 632-7075 (Linda.Padwa@stonybrook.edu).
Undergraduate Chemistry Teacher Preparation Program
Degree and Certification Requirements

The undergraduate chemistry teacher preparation program is based on completion of a BA or BS program in Chemistry, with required classes in the supporting sciences and secondary education. The BA program comprises over 53 credits of chemistry, physics, and mathematics, and the BS program (more commonly completed by candidates) over 65 credits. Over 220 hours of laboratory work is required, as is a course in scientific writing, ethics, and use of scientific literature.

Additionally, teacher candidates take courses in biology and earth science beyond the requirements for the chemistry major.

All applicants to the Chemistry Teacher Preparation Program must:

- Apply to the program during second semester of sophomore year or first semester of junior year.
- Have taken at least 4 science lab courses.
- Achieve a cumulative GPA of 2.75 and a GPA of 2.75 in science courses.
- Contact the chemistry education advisor for a transcript review and to plan a course of study.
- Contact one of the science education program advisors for an interview.
- Fill out the Professional Education Program Undergraduate Application Form (see http://www.sunysb.edu/pep/docs/UnderAppForm.doc). Attach an unofficial copy of your transcript(s) from each college or university that you have attended and your essay. Submit all documents for approval by the Science Education Program Director.
- Declare a Teacher Preparation option by submitting the “Declaration of Major/Minor Form” with TP to the Registrar. Forms are available at the Registrar’s Office, the Undergraduate Chemistry advisor’s office in the Chemistry Building, and the Science Education Program Office, Life Sciences 001.

Contact information for program advisors can be found on the first page of this document.
Chemistry Content for Teacher Preparation Option

All required courses must be taken for a letter grade; P/NC grades are not acceptable. All of the courses used to fulfill the requirements of the major (CHE, MAT, PHY, BIO, etc.) must be passed with a grade of C or higher, with the exception of three courses, for which the grade may be C-. No transferred course with a grade lower than C may be used to fulfill any major requirement.

A. Core Requirements

- CHE 129/130 or 131, 132 or 141, 142 General or Honors Chemistry
- CHE 133, 134 or 143, 144 General or Honors Chemistry Laboratory
- CHE 301, 302 Physical Chemistry I, II
- CHE 303 Solution Chemistry Laboratory
- CHE 321, 326 Organic Chemistry I, IIB
- CHE 375 Inorganic Chemistry
- CHE 383 Introductory Synthetic and Spectroscopic Laboratory Techniques
- CHE 385 Tools of Chemistry
- MAT 131, 132 Calculus I, II (Substitutions are possible, see note 1)
- MAT 211 or AMS 210 Linear Algebra (Substitutions are possible, see note 1)
- PHY 131/133, 132/134 Classical Physics I, II, or PHY 141,142 Honors Physics I, II, with labs, or PHY 125, 126, 127, with labs PHY 133 and PHY 134

B. Area Requirements

One of the following options:

1) **Chemical Science Option**
 - CHE 304 Chemical Instrumentation Laboratory
 - CHE 384 Intermediate Synthetic and Spectroscopic Laboratory Techniques
 - CHE 357 Molecular Structure and Spectroscopy Laboratory
 - CHE 487 Research in Chemistry (3 credits) or CHE 496 Senior Research
 - Two electives chosen from CHE 345, 346, 348, 351, 353, 376, 378, PHY 251 or ESG 281

2) **Biological Chemistry Option**
 - CHE 384 Intermediate Synthetic and Spectroscopic Laboratory Techniques
 - One organic or inorganic chemistry elective: CHE 345, 346 (see note 2), 348, 376, 378, or 496
 - BIO 202 Fundamentals of Biology: Cell and Molecular Biology
 - CHE 346 (recommended) or BIO 361 Biochemistry I
 - BIO 310 Cell Biology or BIO 362 Biochemistry II
 - It is recommended that students selecting the biological option take a minimum of one BIO lab (e.g., BIO 204)
3) **Chemical Physics Option**
- CHE 304 Chemical Instrumentation Laboratory
- CHE 351 or CHE 353 Quantum Chemistry or Chemical Thermodynamics
- CHE 357 Molecular Structure and Spectroscopy Laboratory
- MAT 203 Calculus III with Applications or MAT 303 Calculus IV (Substitutions are possible, see note 1)
- PHY 251/252 Modern Physics and Laboratory
- One elective chosen from: PHY 277 Computation for Physics and Astronomy, PHY 300 Waves and Optics, PHY 307 Physical and Mathematical Foundations of Quantum Mechanics, PHY 301 Electromagnetic Theory I, PHY 303 Mechanics, PHY 306 Thermodynamics, Kinetic Theory, and Statistical Mechanics (the last three courses require other physics prerequisites or permission of the instructor)

4) **Environmental Chemistry Option**
- CHE 304 Chemical Instrumentation Laboratory
- CHE 310 Chemistry in Technology and the Environment
- CHE 357 Molecular Structure and Spectroscopy Laboratory
- CHE 384 Intermediate Synthetic and Spectroscopic Laboratory Techniques
- BIO 201 Fundamentals of Biology: Organisms to Ecosystems or BIO 113 Applied Ecology
- ATM/MEC 397 Air Pollution and Its Control (Substitutions are possible, see note 3)

5) **Marine and Atmospheric Chemistry Option**
- ATM 205 Introduction to Atmospheric Science
- MAR 308 Principles of Instrumental Analysis
- MAR 333 Coastal Oceanography
- MAR 351 Introduction to Ocean Chemistry
- Two electives chosen from: MAR 301 Environmental Microbiology, MAR 302 Marine Microbiology and Microbial Ecology, MAR 334 Remote Sensing of the Environment, MAR 336 Marine Pollution, MAR 394 Environmental Toxicology and Public Health, ATM 305 Global Atmospheric Change, ATM 345 Atmospheric Thermodynamics and Dynamics, ATM 397 Air Pollution and Its Control

C. **Upper-Division Writing Requirements**
Each student majoring in chemistry must take CHE 385, Tools of Chemistry, until a satisfactory grade is achieved. The course requires several papers, which are evaluated for cogency, clarity and mechanics.

Notes:
1. Alternate Mathematics sequences: The following alternate sequences may be substituted for major requirements or prerequisites: MAT 125, MAT 126, MAT 127 or MAT 141, MAT 142 or MAT 171 or AMS 151, AMS 161 for MAT 131, MAT 132; MAT 203 for AMS 210 or MAT 211. MAT 203 may be replaced by AMS 261 and MAT 303 may be replaced by AMS 261. The Chemical Physics option requires two math courses in addition to Calculus I and II. Equivalency for MAT courses as indicated by earning the appropriate score on a placement
examination will be accepted as fulfillment of the requirement without the necessity of substituting other credits.

2. CHE 346 may not be used as both an elective and as a substitute for BIO 361.

3. The following substitutions for ATM 397 need additional prerequisites: ENV 315/GEO 315 Groundwater Hydrology, MAR 336 Marine Pollution, MAR 351 Introduction to Ocean Chemistry.

4. Transfer Credit: At least twelve credits of upper-division work in chemistry must be taken at Stony Brook; these must be taken in at least two of the major subdisciplines (inorganic, physical, and organic chemistry).

5. To qualify for the General Science (7-12) certification, candidates must complete a minimum of 18 semester hours in two or more sciences other than chemistry.

D. Required Additional Areas of Study
In addition to the mathematics and physics courses listed above for all chemistry majors, all chemistry teacher candidates are required to complete one course in biology (BIO 150 or BIO 201 or BIO 202) and one course in earth and space sciences with lab (GEO 102/112 or GEO 103/113 or AST 101/112 or ATM 102 or ATM 205).

E. Interdisciplinary Seminar Series
 ___ The Nature of Science and the Human Endeavor (4 sessions, 0 credit, required)

F. Required Professional Studies in Education Courses
 ___ PSY 327 Middle Childhood/Adolescent Development
 ___ SSE 350 Foundations in Education
 ___ LIN 344 Language Acquisition and Literacy Development
 ___ CEF 347 Introduction to Special Education
 ___ SCI 410 Pedagogy and Methods in Science Education I
 ___ SCI 449 Field Experience I (co-requisite SCI 410)
 ___ SCI 420 Pedagogy and Methods in Science Education II
 ___ SCI 450 Field Experience II (co-requisite SCI 420)
 ___ SCI 451 Supervised Student Teaching 7 – 9 (See note below)
 ___ SCI 452 Supervised Student Teaching 10 – 12 (See note below)
 ___ SCI 454 Student Teaching Seminar (See note below)

Note:

• Prior to admission to student teaching, candidates will be interviewed by a committee to assess their ability to speak extemporaneously about both chemistry concepts and pedagogical issues. Candidates who are not successful in this interview will be counseled in order to remedy deficiencies. Upon completion of the remediation another interview will be held. In the event that a candidate is unable to satisfy the interview component, the candidate will not advance to student teaching.

• 75 days of student teaching are required. Dependent on the semester and public school vacation schedules, student teaching may extend beyond the university semester calendar. Student teaching is divided into two placements of approximately equal duration, one in a middle school/junior high school and the other in a high school.
G. Field Experience
Field Experience sites for all teacher candidates are arranged through SCI 449 and SCI 450. Assignments and details are distributed in SCI 410 and SCI 420. New York State requires 100 hours of field experience in partnership schools prior to student teaching. Each teacher candidate is required to obtain 15 hours of field experience that include a focus on understanding the needs of students with disabilities. These hours will be noted on the Field Experience Time Sheets from SCI 449, SCI 450, or a combination of both. In earning these filed experience hours, teacher candidates will be encouraged to observe inclusion (integrated co-teaching) classes in their certification area and other special education classroom situations as available.

H. State Tests, Mandated Seminars and Fingerprinting
- All teacher candidates must be fingerprinted during SCI 410.
- Prior to student teaching, candidates must complete three mandated seminars, Training in Child Abuse Recognition, Substance Abuse Education, and School Violence and Intervention. For details see http://www.sunysb.edu/spd/career/tworkshops.html.

New York State is in the process of modifying the examinations required for teacher certification, effective May 2013. Details are not yet available but will be discussed in Methods classes as soon as the new examinations are finalized.

For those graduating prior to May 2013, the following test regimen is in place:
- Prior to Student Teaching placement, candidates must earn a passing grade (220 or higher) on the Liberal Arts and Sciences Test (LAST) component of the New York State Teacher Certification Exams (NYSTCE).
- In order to qualify for certification, candidates must pass the Content Specialty Test (CST) in chemistry with a minimum score of 220. It is a program requirement that candidates with a score lower than 220 on any sub-section of the CST must pass an alternate exam on the concepts of that section which will be administered by departmental faculty
- The Assessment of Teaching Skills, Written (ATS-W) is required prior to certification.
- For further information about the NYSTCE testing program, visit their website at http://www.nystce.nesinc.com/.

I. Language Requirement
New York State certification requires at least one year (6 credits) of college level study of a foreign language. Satisfaction of SBU’s DEC Entry Skill 3 fulfills this requirement.

J. Professional Portfolio
The Professional Portfolio is presented and defended at the conclusion of student teaching. It includes many performance indicators of standards-based teaching competencies.
Master of Arts in Teaching Chemistry

For an admission application to the Master of Arts in Teaching degree program, contact the School of Professional Development at (631) 632-7055, or download an application from www.sunysb.edu/spd. The faculty advisor for the MAT in Chemistry program is Dr. Susan Oatis, 631-632-1571; email: susan.oatis@stonybrook.edu. Note that all MAT students seeking chemistry teacher certification must earn the equivalent of the Stony Brook undergraduate chemistry degree program before MAT program completion. For full details, consult the degree and certification requirements for the undergraduate chemistry program. Students plan an appropriate course of study in collaboration with the Chemistry Education Advisor.

A. Core Science Courses for Master of Arts in Teaching Degree
15 credits, including CHE 590 (M.S. Term Paper, see below) and four graduate courses as appropriate in CHE and other science departments. There are no core requirements. Students choose from among this illustrative list of possible courses, or other graduate level science courses, with approval of the advisor. Additionally, the MAT in Chemistry program allows, for instance, molecular biology courses dependent on student background. Consult Graduate Course Catalog for listing of other courses.

_____CHE 501 Instrumental Methods in Chemistry
_____CHE 502 Mechanistic Organic Chemistry
_____CHE 503 Synthetic Organic Chemistry
_____CHE 504 Structure and Reactivity in Organic Chemistry
_____CHE 507 Biomolecular Structure and Reactivity
_____CHE 511 Structural Inorganic Chemistry
_____CHE 514 Transition Metal Chemistry
_____CHE 515 Advanced Inorganic Chemistry
_____CHE 521 Quantum Chemistry 1
_____CHE 522 Molecular Spectroscopy
_____CHE 523 Chemical Thermodynamics
_____CHE 524 Magnetic Resonance
_____CHE 525 Theoretical Chemistry
_____CHE 528 Statistical Mechanics
_____CHE 530 Physical Chemistry of Macromolecules
_____CHE 589 Directed Study
_____CHE 591 Chemistry in Society
_____CHE 593 Chemical Demonstrations
_____CHE 610/611 Practicum in Teaching

The M.S. Term Paper is a substantial paper on some aspect of chemical science, technology, or pedagogy and it is to be prepared under the aegis of CHE 590. The subject should be chosen in consultation with the faculty advisor, in whose section of CHE 590 the student will register. A committee of two or more faculty members appointed by the Graduate Coordinator will evaluate the paper. A copy of the paper in its final form is to be submitted to the chemistry library for archiving.
B. Required Additional Areas of Study
All Masters candidates seeking chemistry teacher certification must earn the equivalent of the Stony Brook undergraduate chemistry teacher preparation program. Therefore, consult the undergraduate program described above. Please note that in addition to the mathematics and physics courses required for all chemistry majors, all chemistry teacher candidates are required to complete one course in biology and one course in earth and space sciences.
NOTE: To qualify for the General Science (7-12) certification, candidates must complete a minimum of 18 semester hours (undergraduate or graduate) in two or more sciences other than chemistry.

C. Interdisciplinary Seminar Series
____ The Nature of Science and the Human Endeavor (4 sessions, 0 credit, required)
 See Advisor for each semester’s schedule.

D. Required Professional Studies in Education Courses
____ CEE 505 Education: Theory and Practice
____ PSY 595 Human Development
____ LIN 544 Language Acquisition and Literacy Development
____ CEF 547 Principles and Practices of Special Education
____ SCI 510 Introduction to Science Teaching (Methods of Teaching 1)
____ SCI 549 Field Experience I (co-requisite SCI 510)
____ SCI 520 Science Instructional Strategies & Techniques (Methods of Teaching 2)
____ SCI 550 Field Experience II (co-requisite SCI 520)
____ SCI 551 Supervised Student Teaching 10 – 12 (See * below)
____ SCI 552 Supervised Student Teaching 7 – 9 (See * below)
____ SCI 554 Student Teaching Seminar (See * below)

* Notes:
 • Prior to admission to student teaching, candidates will be interviewed by a committee to assess their ability to speak extemporaneously about both chemistry concepts and pedagogical issues. Candidates who are not successful in this interview will be counseled in order to remedy deficiencies. Upon completion of the remediation another interview will be held. In the event that a candidate is unable to satisfy the interview component, the candidate will not advance to student teaching.
 • 75 days of student teaching are required. Depending on the semester and public school vacation schedules, student teaching may extend beyond the university semester calendar. Student teaching is divided into tow placement of approximately equal duration, one in a middle school/junior high school and the other in a high school.

E. Field Experience
Field Experience sites for all teacher candidates are arranged through SCI 549 and SCI 550. Assignments and details are distributed in SCI 510 and SCI 520. New York State requires 100 hours of field experience in partnership schools prior to student teaching. Each teacher candidate is required to obtain 15 hours of field experience that include a focus on understanding the needs of students with disabilities. These hours will be noted on the Field Experience Time Sheets from SCI 549, SCI 550, or a combination of both. In earning these filed experience hours, teacher
candidates will be encouraged to observe inclusion (integrated co-teaching) classes in their certification area and other special education classroom situations as available.

F. State Tests, Mandated Seminars and Fingerprinting
- All teacher candidates must be fingerprinted during SCI 510.
- Prior to student teaching, candidates must complete three mandated seminars, *Training in Child Abuse Recognition, Substance Abuse Education, and School Violence and Intervention*. For details see http://www.sunysb.edu/spd/career/tworkshops.html.

New York State is in the process of modifying the examinations required for teacher certification, effective May 2013. Details are not yet available but will be discussed in Methods classes as soon as the new examinations are finalized.

For those graduating prior to May 2013, the following test regimen is in place:
- Prior to Student Teaching placement, candidates must earn a passing grade (220 or higher) on the Liberal Arts and Sciences Test (LAST) component of the New York State Teacher Certification Exams (NYSTCE).
- In order to qualify for certification, candidates must pass the Content Specialty Test (CST) in chemistry with a minimum score of 220. It is a program requirement that candidates with a score lower than 220 on any sub-section of the CST must pass an alternate exam on the concepts of that section which will be administered by departmental faculty.
- The Assessment of Teaching Skills, Written (ATS-W) is required prior to certification.

For further information about the NYSTCE testing program, visit their website at http://www.nystce.nesinc.com/.

F. Language Requirement:
New York State certification requires 6 credits of a foreign language or its equivalent. (Satisfaction of SBU’s DEC Entry Skill 3 fulfills this requirement.) Bilingual students may satisfy this requirement by taking the CLEP exam in foreign language. (http://www.collegeboard.com/student/testing/clep/ex_foreign.html)

H. Professional Portfolio
The Professional Portfolio is presented and defended at the conclusion of student teaching. It includes many performance indicators of standards-based teaching competencies and Master’s essay.

I. Middle Level Extension
Candidates who wish to qualify to teach grades 5 and 6 in a middle school setting may obtain an extension to their grades 7-12 certification by completing two additional courses prior to graduation. The courses are: CEE 601 Early Adolescent Development and CEE 602 Middle Child Education-Instruction. More information about these courses can be found on the SPD website (www.stonybrook.edu/spd).
Five-Year BS/MAT Chemistry Teacher Preparation Program

Degree and Certification Requirements

The BS/MAT Chemistry teacher preparation program is based on completion of a combined BS in Chemistry and Master of Arts in Teaching in Chemistry. It is possible to complete both degrees in 5 years (instead of 5 ½ years) because of credit sharing between the programs. This program requires a combination of the courses that are required for each of the individual degree programs. A complete description follows below.

All applicants to the BS/MAT Chemistry Teacher Preparation Program must:

- Have taken at least 4 science lab courses.
- Contact the chemistry education advisor for a transcript review and to plan a course of study.
- Achieve a cumulative GPA of 3.00 and a GPA of 3.00 in science courses.
- Apply for the combined program by the end of the junior year.
- Complete the BS/MAT application that is found on the School of Professional Development web site (http://www.stonybrook.edu/spd/graduate/ba_mat.html)
 - SPD Student Application/Information Sheet
 - Three (3) letters of recommendation
 - Official transcript from each college or university attended
 - Application Essay
 - Any additional items required by the School of Professional Development
- Submit application prior to SPD deadline
 (for Fall admission: March 31; for Spring admission: October 31)

Upon entry to the program, candidates must declare a Teacher Preparation option along with their Undergraduate major by submitting the “Declaration of Major/Minor Form” with TP to the Registrar. Forms are available at the Registrar’s Office, the Undergraduate Chemistry advisor’s office in the Chemistry Department Office, and the Science Education Program Office, Life Sciences 001.

Number of semesters of full-time study required for program completion at the undergraduate and graduate levels.

Students should apply to the combined BS/MAT program during their fifth or sixth semester of study. The first six semesters of the program are full time study at the undergraduate level. Semesters seven and eight will include a mix of undergraduate and graduate courses. Semesters nine and ten will consist of graduate courses only. Candidates will generally advance to Graduate status during their eighth semester.

Note: The two degrees are conferred only when the entire combined degree program has been completed. Both degrees are conferred together unless the student elects to exit the combined degree program and receive only a BS in Chemistry.
Additional Requirements

Interdisciplinary Seminar Series
The Nature of Science and the Human Endeavor (4 sessions, 0 credit, required). See advisor for each semester’s schedule.

Student Teaching
Prior to admission to student teaching, candidates will be interviewed by a committee to assess their ability to speak extemporaneously about both chemistry concepts and pedagogical issues. Candidates who are not successful in this interview will be counseled in order to remedy deficiencies. Upon completion of the remediation another interview will be held. In the event that a candidate is unable to satisfy the interview component, the candidate will not advance to student teaching.

Seventy-five days of student teaching are required. Depending on the semester and public school vacation schedules, student teaching may extend beyond the university semester calendar. Student teaching is divided into two placements of approximately equal duration, one in a middle school/junior high school and the other in a high school.

Field Experience
Field Experience sites for all teacher candidates are arranged through SCI 549 and SCI 550. Assignments and details are distributed in SCI 510 and SCI 520. New York State requires 100 hours of field experience in partnership schools prior to student teaching. Each teacher candidate is required to obtain 15 hours of field experience that include a focus on understanding the needs of students with disabilities. These hours will be noted on the Field Experience Time Sheets from SCI 549, SCI 550, or a combination of both. In earning these filed experience hours, teacher candidates will be encouraged to observe inclusion (integrated co-teaching) classes in their certification area and other special education classroom situations as available.

State Tests, Mandated Seminars and Fingerprinting
• All teacher candidates must be fingerprinted during SCI 510.
• Prior to student teaching, candidates must complete three mandated seminars, Training in Child Abuse Recognition, Substance Abuse Education, and School Violence and Intervention. For details see http://www.sunysb.edu/spd/career/tworkshops.html.

New York State is in the process of modifying the examinations required for teacher certification, effective May 2013. Details are not yet available but will be discussed in Methods classes as soon as the new examinations are finalized.

For those graduating prior to May 2013, the following test regimen is in place:
• Prior to Student Teaching placement, candidates must earn a passing grade (220 or higher) on the Liberal Arts and Sciences Test (LAST) component of the New York State Teacher Certification Exams (NYSTCE).
• In order to qualify for certification, candidates must pass the Content Specialty Test (CST) in chemistry with a minimum score of 220. It is a program requirement that candidates with a score lower than 220 on any sub-section of the CST must pass an alternate exam on the concepts of that section which will be administered by departmental faculty
• The Assessment of Teaching Skills, Written (ATS-W) is required prior to certification.
For further information about the NYSTCE testing program, visit their website at http://www.nystce.nesinc.com/

Language Requirement
New York State certification requires at least one year (6 credits) of college level study of a foreign language. Satisfaction of SBU’s DEC Entry Skill 3 fulfills the foreign language requirement.

Professional Portfolio
The Professional Portfolio is presented and defended at the conclusion of student teaching. It includes many performance indicators of standards-based teaching competencies.

Middle Level Extension
Candidates who wish to qualify to teach grades 5 and 6 in a middle school setting may obtain an extension to their grades 7-12 certification by completing two additional courses prior to graduation. The courses are: CEE 601 Early Adolescent Development and CEE 602 Middle Child Education-Instruction. More information about these courses can be found on the SPD website (www.stonybrook.edu/spd).

General Science Certification
To qualify for the General Science (7-12) certification, candidates must complete a minimum of 18 semester hours in two or more sciences other than chemistry.
Chemistry BS/MAT – Sample Course Sequence

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>UG</th>
<th>G</th>
<th>Semester 2</th>
<th>UG</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 131 or 141</td>
<td>4</td>
<td>CHE 132 or 142</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 133 or 143</td>
<td>1</td>
<td>CHE 134 or 144</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT 125</td>
<td>3</td>
<td>MAT 126</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBU 101</td>
<td>1</td>
<td>BIO or GEO</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td>3</td>
<td>DEC</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td>3</td>
<td>DEC</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester 3</td>
<td>Semester 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 321</td>
<td>3</td>
<td>CHE 322 or 326</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 383</td>
<td>2</td>
<td>CHE 384</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT 127</td>
<td>3</td>
<td>CHE 385</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO or BIO</td>
<td>3</td>
<td>MAT 211 or AMS 210</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td>3</td>
<td>DEC</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td>3</td>
<td>DEC</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester 5</td>
<td>Semester 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 301</td>
<td>4</td>
<td>CHE 302</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 303</td>
<td>2</td>
<td>CHE 304</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 131, 133</td>
<td>4</td>
<td>DEC</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSY 327</td>
<td>3</td>
<td>PHY 132, 134</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign Lang.</td>
<td>4</td>
<td>SSE 350</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester 7</td>
<td>Semester 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 375</td>
<td>3</td>
<td>SCI 510</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 357</td>
<td>2</td>
<td>SCI 549</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 310</td>
<td>3</td>
<td>LIN 544</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 495</td>
<td>3</td>
<td>CHE 496</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td>3</td>
<td>Grad 2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grad 1</td>
<td>3</td>
<td>DEC</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester 9</td>
<td>Semester 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCI 520</td>
<td>3</td>
<td>SCI551</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCI 550</td>
<td>1</td>
<td>SCI552</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grad 3</td>
<td>3</td>
<td>SCI554</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grad 4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 590**</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEF 547</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Satisfaction of SBU’s DEC Entry Skill 3 fulfills the foreign language requirement.

**A substantial paper on some aspect of chemical science, technology, or pedagogy is to be prepared under the aegis of CHE 590. The subject should be chosen in consultation with the faculty advisor, in whose section of CHE 590 the student will register. The paper will be evaluated by a committee of two or more faculty appointed by the Graduate Coordinator. A copy of the paper in its final form is to be submitted to the chemistry library for archiving.

The above listing of courses provides a suggested sequence for coursework. There is a degree of flexibility in the order of courses, but any deviation from the above without permission of chemistry teacher preparation advisor may lead to delay in completion of the program. A student wishing to complete this 5 year combined program is strongly encouraged to consult with the chemistry teacher preparation advisor for individualized guidance in course selection.