Ubiquitous Knowledge Sharing with Mobile Augmented Reality

Shu Tao

IBM T J Watson Research Center

October 16, 2018

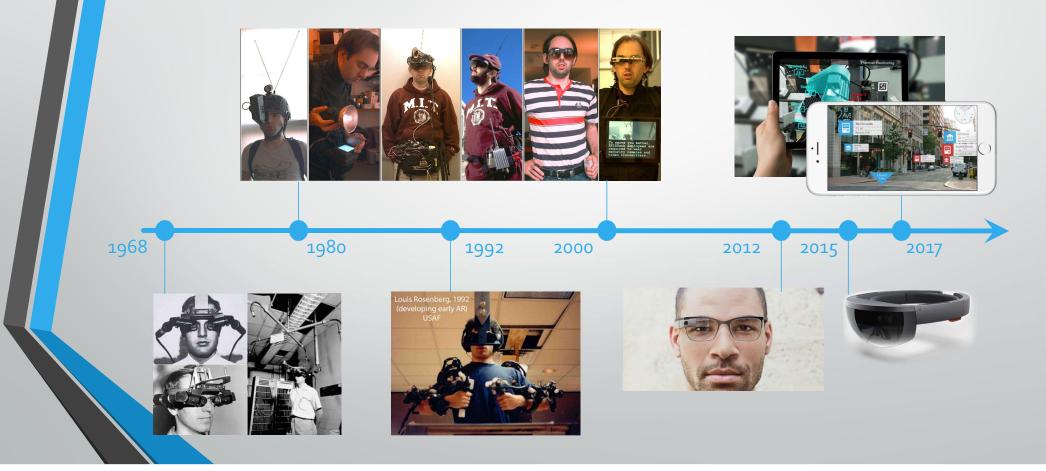
Augmented Reality Overview

- AR adds computer generated content to real world
- Key challenges for AR adoption
 - Social acceptance
 - Good enough experience
 - Hardware prevalence

- Content availability
- Legal and privacy
- Killer applications

The Increasing Presence of AR in Our Lives

AR Use cases & Knowledge Sharing


Education

Entertainment

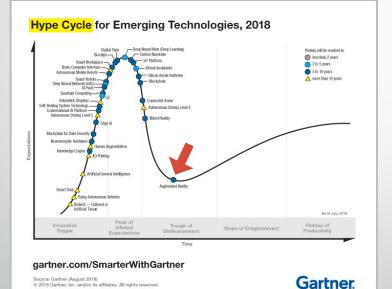
Field Service

- All use cases involve knowledge sharing
- AR: immersive, more natural knowledge acquisition
- Critical to knowledge sharing with AR
 - What relatively easy
 - Where somewhat achievable
 - When heavy research

The Evolution of AR Hardware

Under the Hood of Mobile AR

- Recognition & tracking What
 - image, 3D object, face ...
- Mapping & localization *Where*
 - map the environment and track the 6DoF camera pose
- Scene understanding When
 - planes, feature points ...
- Rendering *Make it real*
 - lighting, texture, scale, position, shadow ...


Mobile AR Software

- Visual trackers with less hardware dependency
 - Vuforia
 - Wikitude
 - Open source (ORB-SLAM, OpenCV)
 - ...

...

- VIO (Visual Inertial Odometry) tracker with hardware support
 - ARKit: calibrated to Apple hardware
 - ARCore: previously Tango with reference hardware design

The Maturing of AR Eco System

ARCore
Microsoft
Microso

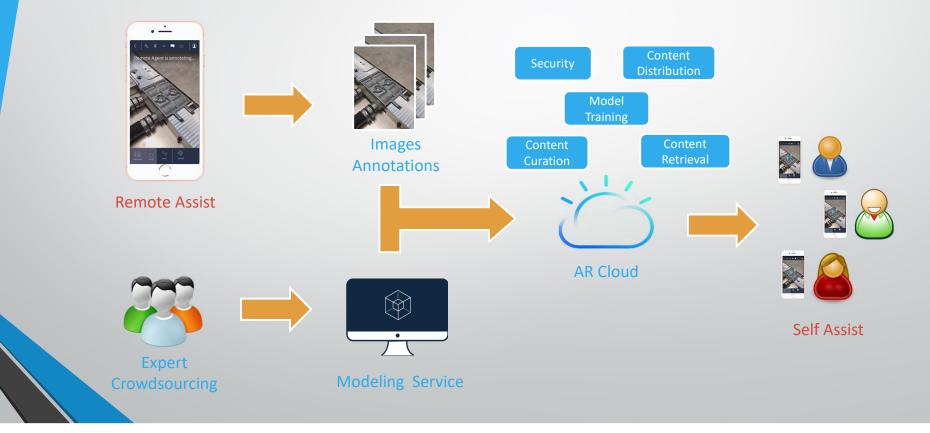
AR for Remote Maintenance & Support

- Solution developed for IBM Technology Support Service (<u>link</u>)
- Use AR to enable remote expert to effectively share knowledge with field technician or end user

Self Assist : More Scalable Knowledge Sharing

Content creation at scale

- Persistent content
- Object modeling
- Tracking in noisy environment
- Scene understanding and context awareness
 - Changing scene or object state



Persistent, Cloud-based AR

- Persistent AR experience
 - Enabled in ARCore 1.2 and ARKit 2.0
 - Persisting virtual content in great accuracy in real world
 - Shared experience across users or sessions
- What is AR Cloud?
 - Build and maintain AR content related to physical world
 - Enable ubiquitous access
 - Integrate domain-specific knowledge into AR experience

Auto-generating AR Content for Self Assist

AR Cloud

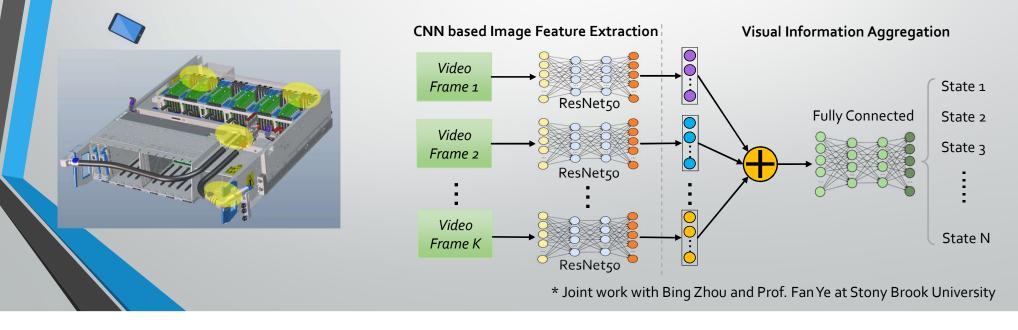
Content Curation

- Acquire and generate reusable AR content: point clouds, key frames, annotations, meta data
- Model Training
 - Train models for 2D or 3D object recognition, scene and context recognition
- Content Retrieval
 - Find most relevant AR content based on user requests and environmental context
- Content Distribution
 - Deliver AR content and models to mobile app in real time (caching, latency ...)
- Security & Privacy
 - Ensure only using non-personally identifying meta-data, access control, encryption/decryption

Remaining Challenges in AR

Scene understanding

- Deep learning for 3D classification and segmentation
- ScanNet, PointNet, ...
- 3D reconstruction
 - Shape and structure detection
 - Collision and occlusion



Source: http://stanford.edu/~rqi/pointnet/

Tracking State Changes for Hardware Objects

Model and understand the state change of hardware during maintenance*

- Capture video frames on POI (Points of Interests) from mobile camera
- Train CNN models for automated recognition of current state, to enable AR-based self assist

Summary

- Mobile AR ecosystem is maturing
- Mobile AR will revolutionize knowledge sharing
- AR Cloud is key to successful knowledge sharing applications
- Exciting opportunities in the area of AR + AI