



Large Scale Social Media-based Analysis of Human Behavior and Decision Making

SHIMEI PAN UMBC (SHIMEI@UMBC.EDU)

Acknowledgement

This is a joint work with my PhD students

Tao Ding

Arpita Roy

Doa Yakut Kilic

and my collaborator:

Dr. Warren Bickel, Virginia Tech.

Social Media-based Behavior Analysis

Social media contain rich and diverse behavior evidences that are indicative of who we are

Main Advantages

- Large scale: includes the behaviors of millions of social media users
- **Comprehensive:** contains a large number of personal and social factors (e.g., individual traits, family and community context)
- Longitudinal: follows behaviors of users continuously over a long period of time (e.g., years);
- **Organic**: data are automatically, continuously collected in an open and natural environment

Main Challenges (1)

Heterogeneous User Data → Need to combine them to paint a comprehensive picture

Data associated with a typical social media user

- Text : tweets or status updates on Facebook
- Image: profile pictures and images shared
- Like: books, movies, TV shows, music, stores, brands, places that a social media user likes
- Social network: friends and followers
- Demographics: social media profile

Main Challenges (2)

- Text (including symbols, hashtags and emojis)
 - Unigrams/bigrams: millions of features
- Image
 - Thousands/millions of pixels (depending on resolution)
- Like
 - Millions of different things (books, movies, stores, brands) and people (authors, scientists, celebrities)
- Social network
 - Social graph with millions of nodes and links

Main Challenges (3)

Small ground truth dataset

- Survey-based behavior assessment
 - Lengthy questionnaire
 - E.g., Five 5 personality assessment: IPIP-50 (50 items), IPIP-300 (300 items)
- Hard to scale
 - Typical size : a few hundred to a few thousand people

Small ground truth + large feature space \rightarrow Learned models can easily overfit the data!

Key: Unsupervised User Modeling (User Embedding)

- Goal:
 - To employ unsupervised or self-supervised learning to derive a small number of (e.g. a few hundreds) latent user features to characterize the behavior and decision making process of an individual based on raw social media data
- Advantages:
 - A large amount of training data are available
 - Perform both feature learning and dimension reduction simultaneously

Case Study

Modeling *Delay Discounting* from social media *likes*

 Predicting Substance Use from social media posts and likes

Case study1 : Delay Discounting

- A behavioral measure of impulsivity to quantify the human tendency to choose a smaller, sooner reward over a larger, later reward
- The Marshmallow Test (Mischel et al. 1970, Mischel et al. 1972)

Why Study Delay Discounting?

- Delay discounting is a hot topic in economics and behavior science
 - Pitting the demands of long-term goals against short-term desires is among the most difficult tasks in human decision making
- High delay discounting rate is linked to
 - pathological gambling
 - credit card default
 - poor academic performance
 - substance abuse
 - •

Research Question: Can We Infer Delay Discounting from Social Media Likes?

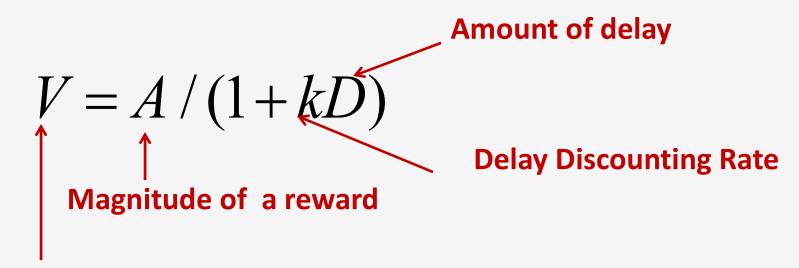
- Social media Likes represent one of the most generic digital footprints left by people on social media
 - A user can indicate his likes of almost anything such as a book, a movie, a song, a brand, a store, a hobby, a statement, a person (e.g., an author, scientist, actor, singer) ...
- Previous research has shown that social media Likes contain rich evidences that are indicative of who we are (Kosinski et al. 2013)
 - Personality, ethnicity, religious and political views, intelligence, happiness, age, gender ...

Dataset Description

- Raw social media data
 - 11 million Facebook users
 - 9.9 million unique Like Entities (LEs)
 - 1.8 billion user-like pairs
 - Average Likes per user: 161
 - Average Likes received per LE: 182
- Delay discounting ground truth data
 - 3508 people with both Likes and delay discounting ground truth

Modeling Delay Discounting

A hyperbolic delay discounting model



Perceived value of a delayed reward

- Delay discounting Rate (DDR)
 - Small DDR → small discount for future reward (tomorrow person)
 - Large DDR \rightarrow steep discount for future reward (today person)

How to Obtain DDR Ground Truth?

- Delay discounting task (Stillwell et al. 2012)
 - Each FB user was presented with 15 different immediate monetary rewards (e.g., \$1000, \$950, \$900 ... \$100)
 - The future reward is always \$1000
 - The delays were between 1 week and 5 years
 - Multi-item delay discounting questionnaire such as
 - \$950 now or \$1000 in 1 year
 - **\$ 900 now** or \$1000 in 1 year
 - \$850 now or \$1000 in 1 year
 - \$800 now or \$1000 in 1 year
 - \$750 now or \$1000 in 1 year
 - \$ 700 now or \$1000 in 1 year ...
 - Obtain "indifference value" for each delay (e.g., \$700 above)
 - Compute k_i=(A-V_i)/V_i D_i (k_{1yr}=(1000-700)/1000*700=0.00043)
 - Normalize (k_i)=log (k_i) (e.g., log(0.00043)=-3.37)
 - DDR= average of normalized (k_i) for all the delays

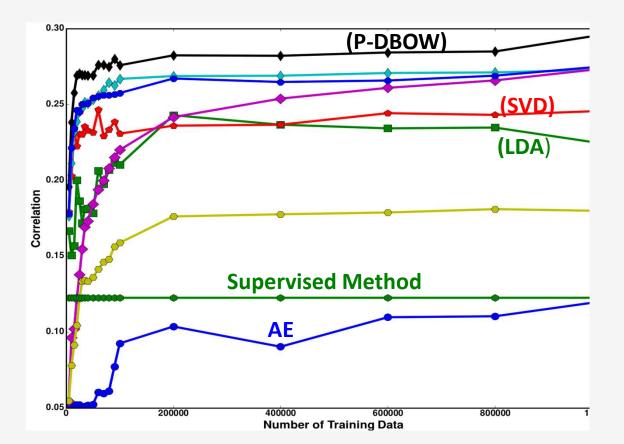
User Like Embedding

- Goal: to employ unsupervised/self-supervised learning to obtain a representation of user behavior and traits based on all the social media Likes of a user
- Input: all the social media Likes of a user
 - A sparse vector with a large number of features (e.g., one for each unique LE)
- Output: a latent user like representation
 - A dense vector representation with a small number of features (e.g., a few hundred features)

User Like Embedding Methods

Method	Inference	Stages	Aggregation	Local Context	Interpretable
SVD LDA Autoencoder U-CBOW U-SG U-GloVe	count count prediction prediction prediction count	1-stage 1-stage 1-stage 2-stage 2-stage 2-stage	direct inference direct inference direct inference Average Average Average	No No Yes Yes Yes	No Yes No No No No
P-DM P-DBOW	prediction prediction	1-stage 1-stage	direct inference direct inference	Yes No	No No

Evaluating DDR Prediction



The improvement of the best model (P-DBOW) over the model without user embedding is 123%

Understanding Like Embedding and Delay Discounting

Correlation analysis with Bonferroni correction

• Control for confounding variables such as age and gender

Topic ID	Correlation	Representative Likes	
Positive Correlation		(Favored more by a today person)	
141	+	2Pac, Wiz Khalifa, Ludacris, Dr. Dre, Tyga	
430	+	wake up in middle of night, look at clock, yes I still have time to sleep!	
		OH, I GET IT! (Teacher walks away) Dude, i STILL dont get it	
431	+	Ciara, R. Kelly, Tyrese Gibson, Kelly Rowland	
014	+	The Tattoo Page, Kat Von D, Inked Magazine	
051	+	Eminem, Association football, Corsair, Logitech Gaming, AMD Gaming	
Negative Correlation		(Favored more by a tomorrow person)	
494	_	Wikileaks, BBC Earth, Ferris Bueller's Day Off, Earth hour	
250		Star Trek, The Shawshank Redemption, The Lord of the Rings (film), Start Wars	
481		NPR, The Daily Show, The Colbert Report, The Onion, Barack Obama	
159		The Lord of the Rings, The Lord of the Rings Trilogy, Lord Of the Rings, The Hobbit	
405	_	George Takei, Ricky Gervais, Peter Jackson, Bill Nye The Science Guy, Ian McKellen	

Case Study 2: Predicting Substance Use

- Goal: to predict substance use based on multiple types of social media data
 - Likes \rightarrow User Like Embedding (ULE)
 - Posts → User Post Embedding (UPE)
 - Likes+Posts → Multi-view User Embedding (MUE)

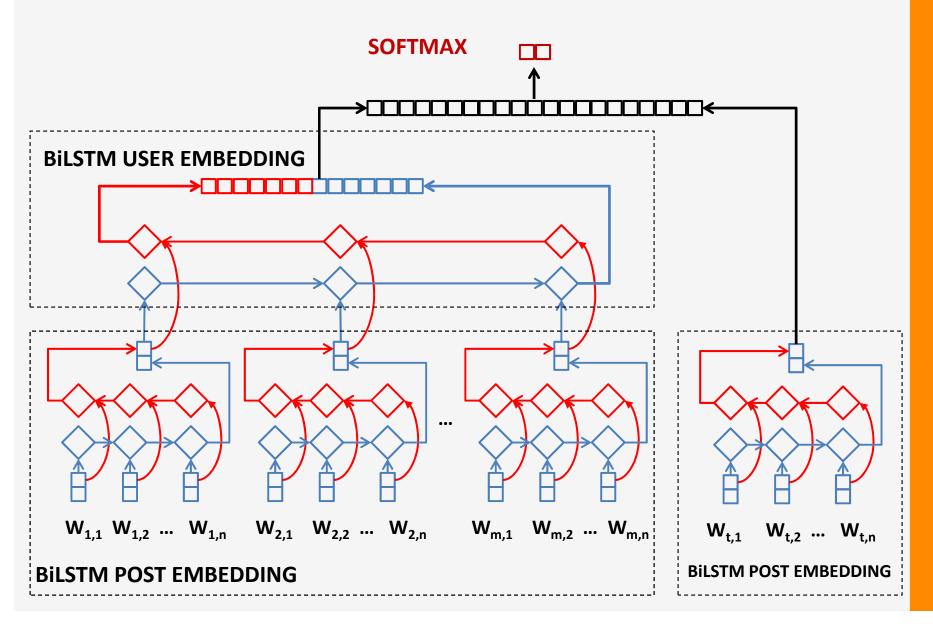
Dataset

Dataset	users	AvgUserLikes	AvgUserPosts	Usage
Likes	5,138,857	184	NA	Single View Feature Learning
LikesSUD	3,508	267	NA	Single View SUD Prediction
Status Update	106,509	NA	143	Single View Feature Learning
StatusSUD	1,231	NA	195	Single View SUD Prediction
LikeStatus	54,757	232	220	Multi-View Feature Learning
LikeStatusSUD	896	277	219	Multi-View SUD Predication

User Post Embedding (UPE)

- Goal: to learn a latent representation based on all the social media posts of a user
- Methods
 - SVD
 - LDA (UserLDA, PostLDA_Word, PostLDA_Doc)
 - Post_DM
 - User_DM
 - Post_DBOW
 - User_DBOW
 - AUT

User Post Embedding: AUT



Multi-view User Embedding (MUE)

• Goal: to combine user like embedding (ULE) with user post embedding (UPE)

- Methods:
 - Canonical Correlation Analysis (CCA)
 - Deep CCA (DCCA)

Canonical-Correlation Analysis (CCA)

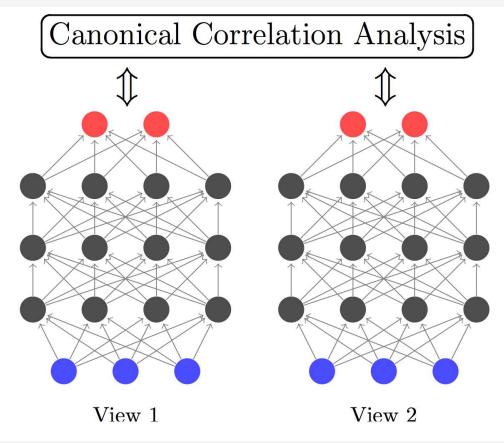
 Given two vectors X and Y, CCA tries to find vectors a and b, so that a'X and b'Y that are maximally correlated. → linear transformation

$$(a^*, b^*) = \arg\max_{a,b} corr(a'X, b'Y)$$
$$= \arg\max_{a,b} \frac{a'\sum_{XY} b}{\sqrt{a'\sum_{XX} ab'\sum_{YY} b}}$$

• $\Sigma_{X,X}$: covariance (X,X), $\Sigma_{Y,Y}$: covariance (Y,Y), $\Sigma_{X,Y}$: cross-covariance (X,Y)

Deep Canonical-Correlation Analysis (DCCA)

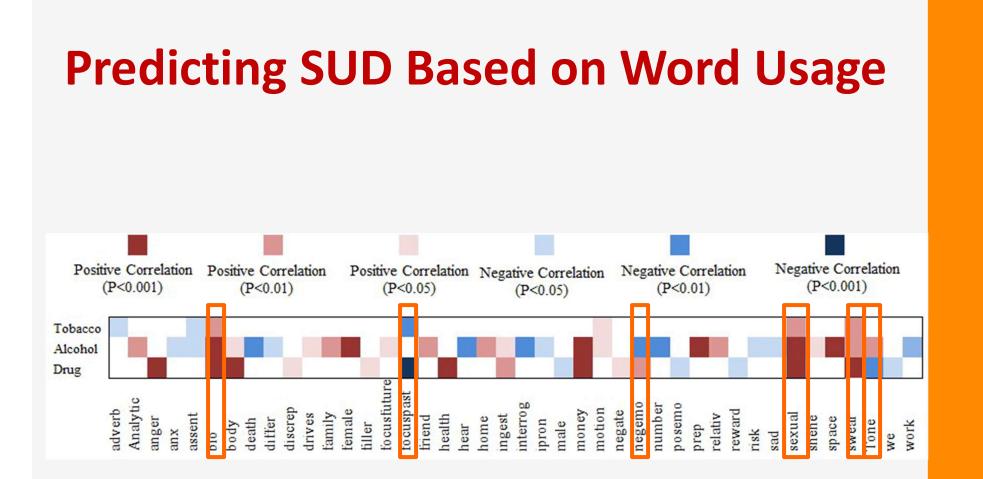
- Goal: to learn highly correlated deep architectures
- A non-linear extension of CCA



Predicting SUD: Results

Models	Tobacco (ROC AUC)	Alcohol (ROC AUC)	Drugs (ROC AUC)
NO PRE- TRAINING	0.685	0.669	0.662
Konsinski 2013	0.73	0.70	0.65
UPE ONLY	0.802	0.768	0.819
ULE ONLY	0.787	0.795	0.791
CCA	0.855	0.811	0.844
DCCA	0.774	0.781	0.737

* ROC AUC is the Area Under the Receiver Operating Characteristic (ROC) Curve, which plots the true positive rate (sensitivity) against the false positive rate (1-specificity).



Conclusions

- Social media contains rich, diverse behavior evidence that can be used to model individual behavior and decision making
- The raw feature space is very large → curse of dimensionality → unsupervised feature learning is the key to success

Contact

Dr. Shimei Pan (<u>shimei@umbc.edu</u>)

