Computer Vision in SBU: Generative Models and Human Behavior Modeling

Dimitris Samaras
samaras@cs.stonybrook.edu
Computer Vision at Stony Brook

The Computer Vision Lab

Faculty: 40+ PhD students
Dimitris Samaras
Haibin Ling
Michael Ryoo (Robotics Lab also)
Minh Hoai

BioMedical Informatics
Zhaozheng Yin
Chao Chen
Prateek Prasanna

Other Faculty
David Gu
Hong Qin
Arie Kaufman

Strong collaborators in CS and other departments on campus Psychology, Music, Art, BNL, BMI, Ecology, Civil Engineering
Computer Vision at Stony Brook

The Computer Vision Lab

Faculty: 40+ PhD students
Dimitris Samaras
Haibin Ling
Michael Ryoo (Robotics Lab also)
Minh Hoai
Diffusion generative models
Setting: Gaussian diffusion models

- Gaussian diffusion models are generative models that learn to reverse a corruption process that adds Gaussian noise.
- The forward process (←) is a Markov chain that gradually adds noise to the data.
- The reverse process (→) is a Markov chain that gradually denoises the data.
 - Denoising diffusion models learn a neural network approximation p_θ to the reverse process, defining the marginal distribution $p(x)$.

[Figure from Ho, Jain, and Abbeel, NeurIPS 2020]
Controllable Generation

- A trained (Gaussian) diffusion model can generate diverse and high-quality unconditional samples from the learned distribution $p(x)$

[Images adapted from Ho, Jain, and Abbeel, NeurIPS 2020]
Controllable Generation - Posterior Inference

- A trained (Gaussian) diffusion model can generate diverse and high-quality unconditional samples from the learned distribution $p(x)$
- We want to use this trained model with additional constraints c to generate samples that satisfy both $p(x)$ and $c(x, y)$
 - $c(x, y)$ could be a separately trained attribute classifier, e.g. *facial attributes*
Controllable Generation - Segmentation

- We also show how a diffusion prior can be used for inferring color-invariant segmentations
 - Using a color clustering of the image we infer the segmentation that matches both a pre-trained diffusion prior and the clustering

Diffusion models as plug-and-play priors, Graikos, Malkin, Samaras, Jojic, NeurIPS 2022
Controllable Generation - Few-shot

- We introduce a method to draw conditional samples from a small set (~10) of condition-image pairs.

![Conditioning Examples](image_url)
Diffusion models for Histopathology

- There is a need for generative models in *specialized* domains such as computational pathology
- Recent large-scale generative models depend on training on *vast amounts of data* and providing *per-image conditions* for controllable generation
Diffusion models for Histopathology - Text Conditioning

- We utilize recent LLM capabilities to summarize the **unstructured pathology reports** into concise text prompts.
- Using these text prompts we train a diffusion model to generate patches of whole-slide histopathology images.
Diffusion models for Histopathology - SSL Conditioning

- Whole-slide text reports fail to describe local details
- Hand-annotating images per-patch is infeasible
 - A dataset of 1000 slides (15M patches) would require $>40,000$ expert hours
We propose using representations learned with self-supervision in place of human annotations.

- We find that SSL representations can accurately describe images allowing us to train large-scale diffusion generative models.
Diffusion Models for Histopathology - Large Images

- Impractical to train directly on the entire digitized slides (32,000 x 32,000 px)
 - We introduce an algorithm to **synthesize large histopathology images** by spatially controlling the local, patch-based model
Diffusion Models for Histopathology - Large Images

- Previous framework constrained to using representations from reference images
 - We train small, auxiliary models that learn to map any condition to the self-supervised representations and generate new images
AVFace: Towards Detailed Audio-Visual 4D Face Reconstruction

Aggelina Chatziagapi

Dimitris Samaras

Stony Brook University
Detailed Audio-Visual 4D Face Reconstruction
Detailed Audio-Visual 4D Face Reconstruction

Input

Reconstruction

Lip shape & facial details
Detailed Audio-Visual 4D Face Reconstruction
Detailed Audio-Visual 4D Face Reconstruction

Input Reconstruction

Accurate 4D reconstruction under occlusion
Project page:
LipNeRF: What is the right feature space to lip-sync a NeRF?

Aggelina Chatziagapi ShahRukh Athar Abhinav Jain Rohith MV Vimal Bhat Dimitris Samaras

Stony Brook University
Lip Synchronization with Speech

Original Audio & Video

Dubbed Audio & Original Video

Lips are out of sync
Audio-driven Talking Head Video Synthesis (or Lip Syncing)

Input Video

Lip Sync

Target Speech

Lip Synced Video to Spanish
MI-NeRF: Learning a Single Face NeRF from Multiple Identities

Aggelina Chatziagapi Grigorios G. Chrysos Dimitris Samaras

arXiv 2024
Learning a **single** NeRF for **multiple** identities

Single-Identity NeRF (Standard)

Multi-Identity NeRF (Ours)
A single face NeRF can generate multiple identities
Standard **single-identity** NeRFs cannot generalize to challenging novel expressions
Target Expression

NeRF

Single-Identity NeRF (Standard)
Learning from multiple identities, our multi-identity NeRF (MI-NeRF) can synthesize novel expressions for any input identity.
Target Expression

NeRFace
Single-Identity NeRF (Standard)

MI-NeRF
Multi-Identity NeRF (Ours)
Target Expression

NeRFace
Single-Identity NeRF (Standard)

MI-NeRF
Multi-Identity NeRF (Ours)
Human Gaze Modeling

Zhibo Yang, Sounak Mondal

Collaborators: Seoyoung Ahn, Yupei Chen, Lihan Huang, Zijun Wei, Ruoyu Xue, Souradeep Chakraborty, Gregory Zelinsky, Dimitris Samaras and Minh Hoai
Gaze prediction for Visual Search

- Predict human scanpath for categorical visual search.
COCO-Search18

Available at https://github.com/cvlab-stonybrook/Scanpath_Prediction
Predicting Goal-directed Human Attention Using Inverse Reinforcement Learning (CVPR 2020)

Collected behavior data

Dynamic Contextual Beliefs

State \(s \)

Actions \(S_1, R_1, A_2, S_2, R_2, A_3, \ldots, A_{n-1}, S_n, R_n \)

Reward \(s \)

Fixations

Unknown

Reward can be learned using *inverse reinforcement learning*

Key assumption: human gaze behaviors are optimal with respect to quickly locating the target (i.e., maximizing the total rewards)
Foveated feature maps (ECCV 2022)
Gazeformer: Scalable, Effective and Fast Prediction of Goal-Directed Human Attention (CVPR 2023)

- We propose a novel **ZeroGaze** task to evaluate scalability.

- We propose a novel **Gazeformer** model to solve ZeroGaze:
 - Gazeformer is more scalable, more effective and faster than previous methods.

Training Dataset:
- Search target in \(N \) categories
- Example: find "fork" or "cup" in training.

Search target outside \(N \) categories (ZeroGaze setting):
- Example: find "knife".

Performance for search target in \(N \) categories (GazeTrain setting):
- Example: find "fork".

Inference Throughput
- Different models compared:
 - Gazeformer
 - IRL
 - FFM

Scanpath Similarity
- "Scalable"
- "Effective"
- "Fast"
Gazeformer Architecture

- Gazeformer adopts a transformer encoder-decoder architecture
 - Learns interactions between image and target semantics
 - Models spatio-temporal context for scanpath generation

![Diagram of Gazeformer Architecture]

1. CNN
2. Transformer Encoder
3. "cup"
4. LM
5. Visual-Semantic Joint Embedding
6. Transformer Decoder
7. Scanpath Prediction
8. Fixation Queries
 - $F_{\text{image}} \in \mathbb{R}^{d \times \text{hw}}$
 - $F_{\text{target}} \in \mathbb{R}^{2d}$
 - $F_{\text{joint}} \in \mathbb{R}^{d}$
Gazeformer’s Extensibility to Uncommon Categories

- Gazeformer extends to unknown and uncommon targets

Hyponyms or synonyms of target names:
- find “hatchback”
- find “sedan”
- find “mug”

No annotation in COCO dataset:
- find “trash can”
- find “pizza cutter”
- find “soda can”

- Gazeformer extends to unknown and uncommon targets
A single model for both top-down (visual search) and bottom-up (free-viewing) attention prediction.

- TV for target-present (TP), sink for target-absent (TA)
- Human Attention Transformer (HAT)
Current work: Visual Search with Referring Expressions

- In real life,
 - More than one object of same type
 - We use **referring expressions**
 - Instance-level
 - Resolve ambiguity
 - Provide search guidance
 - Visual Grounding of referring expressions
 - Also called object referral
 - Naturalistic visual search
Current Work: RefCOCO-Gaze

- RefCOCO-Gaze dataset
 - Based on RefCOCO dataset
 - MS-COCO training images
 - Referring expressions from RefCOCO
 - ~2000 image-text pairs from RefCOCO
 - Gaze collected while listening to the referring expression

"Bike ..."

"... on the right"