This is an 8-week asynchronous online course with 3 synchronous, online proctored exams. A computer, webcam, microphone, and reliable internet service are required to take this course.

*BIO 310 in the Summer Session 2 extended term is administered asynchronously online except for:

Three required proctored synchronous online exam sessions
Exam 1 (Tuesday, July 7th from 6:30 to 8:15 PM)
Exam 2 (Tuesday, July 28th from 6:30 to 8:15 PM)
Exam 3 (Tuesday, August 11th from 6:30 to 8:15 PM)

Syllabus

Part 1: Course Information

Instructor Information

Course Content Instructor: Susan Erster, PhD
Office: Life Science Building, Room 316
Office Hours: By Appt. E-mail to schedule: Phone appt. or Zoom virtual office hours access through Blackboard (headsets recommended)
Office Telephone: 631-632-8562
E-mail: Susan.Erster@stonybrook.edu

Online Course Faculty Administrator: Joanne Souza, PhD/Jillian Conte, PhD
Office: Life Science Building, Room 378
Office Hours: By Appt. Email to schedule: Phone appt.
Office Telephone: 631-632-8548
Email: Joanne.Souza@stonybrook.edu
Jillian.Conte@stonybrook.edu

Course Description

The cell is studied as the unit of structure, biochemical activity, genetic control, and differentiation. The principles of biochemistry and genetics are applied to an understanding of nutrition, growth, and
development.

Prerequisite
C or higher in BIO 202 or equivalent; C or higher in BIO 203; CHE 321 or CHE 331 or CHE 341

Textbook & Course Materials

Required Text

Course Technical Requirements—An internet connection that can support video is a requirement to take this course

- Internet connection (DSL, LAN, or cable connection desirable)
- Access to Blackboard
 - Browsers by Operating System
 - Windows 8, Windows 10
 Internet Explorer 11
 Firefox 31+
 Chrome 36+
 - Windows 7, Vista
 Internet Explorer 11
 Firefox 31+
 Chrome 36+
 - Mac OS X 10.7, 10.8, 10.9, 10.10, 10.11& 10.12
 Safari 6+
 Firefox 31+
 Chrome 36+
 - Adobe Acrobat Reader and Quicktime and/or Windows media
 - Java: Update to newest version, if prompted
 - Computer, webcam, microphone required

Course Structure

This course, except for three synchronously administered proctored exams (See page one of this syllabus) will be delivered entirely online, asynchronously, through the Blackboard course management system.

Exams will be SYNCHRONOUSLY administered and monitored through webcams on the dates indicated above, no exceptions.

For current Stonybrook students: You will use your NetID account to
log in to the course from the Blackboard login page (http://blackboard.stonybrook.edu).

For visiting students you will receive your NETID account after registering at http://www.stonybrook.edu/summer-session/visiting-students/ then you will sign onto blackboard at http://blackboard.stonybrook.edu

- In Blackboard, you will have access to the following:
 - Course content lectures and learning objectives
 - Video lecture modules and animated movies (45 hours total)
 - Online quizzes- designed to assist you in gaining higher levels of content mastery.
 - Asynchronous discussion resources - Discussion board submissions consist of learning to think scientifically and utilize falsification to eliminate potential answers to questions. These discussions will be mentored by teaching assistants with the purpose of helping you to solve more difficult, complex questions.

Estimated Weekly Time Budget:

Video lecture hours: approx. 6

Textbook : 2

Quiz hours : 2

Discussion hours : 1

- Each week, you will access the lecture folders assigned for the week under your assignments tab on Blackboard. Within those folders will be the lecture videos separated into video modules (usually A, B, C, D), textbook readings, movie assets, lecture PowerPoints, and graded assignment due dates for the week.

- After watching each lecture module, you will complete a graded learning asset Equiz consisting of between 5 and 9 questions of varying levels of difficulty beginning at the foundational conceptual/definitional level, then adding detail of understanding and complexity, and lastly applications of content. These quizzes are designed to assist you in learning content while building your skill level in answering more complex questions per module of the course. Each correct answer will earn one point toward your learning asset grade.
See detailed directions on Blackboard.

- Each week you will also be asked to contribute to a discussion regarding one of a choice of complex questions to hone your skills of scientific thinking, falsification, and attention to detail. See grading rubric on Blackboard for more information.

- These quizzes and discussion sessions (combined called Learning assets) are designed to help you learn and retain the material in the course and to solve more complex problems such as those on the exams and later standardized preparatory exams (MCAT, DAT, etc) as well as those in research and medical applications. These assets are in place to assist you to do better on your exams and beyond, so we suggest you use them toward that end.

- In addition, there will be a general discussion board that is ungraded where students can ask questions of the faculty and the teaching assistants in any area of the course.

- There are three synchronously administered, online proctored exams, each covering approximately one third of the content, monitored through the webcam on your computer. Webcams and microphones ARE required to take this course.

- If you need technical assistance at any time during the course or to report a problem with Blackboard you can:
 - Visit the Stony Brook University Student Help Desk Page
 - Phone: (631) 632-9602
 - E-Mail: helpme@stonybrook.edu
 - Live Chat: Chat Live with the TLT Student Help Desk!

<table>
<thead>
<tr>
<th>Contact the University Service Desk at (631) 632-9602</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important Note: This syllabus, along with course assignments and due dates, are subject to change. It is the student’s responsibility to check Blackboard for corrections or updates to the syllabus. Any changes will be clearly noted in course announcement and/or through Blackboard email.</td>
</tr>
</tbody>
</table>

Part 2: Course Learning Objectives

The course is designed for students with a strong background and interest in biology. The course will present our current understanding of eukaryotic cellular architecture and the molecular basis for most general cellular functions. Emphasis will be placed on the methodologies and approaches of ongoing research efforts, so that students will be more prepared to read research papers published in scientific journals.
At the end of this course a student will understand eukaryotic cellular architecture and the molecular basis for most general cellular functions. Students will also understand the application of experimental techniques in cell biology and their use in biological research. Upon completion of BIO 310, students will be able to:

1. Differentiate between eukaryotic & prokaryotic cells and describe the endosymbiotic theory.
2. Describe the structure or cellular membranes, and correlate membrane structure with membrane functions.
3. Explain the structure of the genetic material and its relationship to nuclear structure and function. Define chromatin remodeling and correlate chromatin structure with gene expression and cell cycle progression.
4. Discuss the structure, roles and interactions of organelles. Integrate the abundance/absence of organelles with cellular activities.
5. Provide a conceptual framework for the mechanisms by which proteins, lipids, and nucleic acids, and carbohydrates are moved from their sites of synthesis to their ultimate locations. Predict the mechanisms involved in cellular trafficking of a given macromolecule.
6. Explain the mechanism and regulation of transport of membrane vesicles to their destinations. Differentiate the various modes of vesicular transport.
7. Discuss gene expression and correlate the multiple levels of gene expression regulation with cell activity.
8. Define signal transduction and compare/contrast the molecules and molecular interactions utilized by cells to transduce diffusible extracellular signals into biochemical changes within the cell.
9. Describe the molecules and molecular interactions utilized by cells to communicate and sense neighboring cells and the structural environment.
10. Explain the structure of the cytoskeleton and demonstrate an understanding of the ways the cytoskeletal elements enable cell activities such as motility, intracellular transport, and regulation of gene expression.
11. Elaborate on the nature of pathogens and differentiate between the innate and adaptive immune responses to pathogens.
12. Provide a conceptual overview of cell cycle regulation. Correlate the abundance, location, and activation of cell cycle regulators with cell cycle progression.
13. Articulate the ways in which cell processes such as signal transduction and cell cycle regulation can be altered, resulting in cancer.
14. Describe the basic mechanism of programmed cell death and necrotic cell death. Establish the impact of proliferative and apoptotic signaling in normal and abnormal cells.

You will meet the objectives and learning outcomes listed above through a combination of the following activities in this course:

- Watch assigned lecture module videos and movie assets
- Review the comparable content in the textbook
• Complete graded learning assets quizzes per module
• Participate in all the discussion board sessions per module
• Complete the three synchronously administered online proctored exams.

Part 3: Grading Policy

Graded Course Activities

Visit the Assignments link in Blackboard for details about each weekly assignment and the due dates.

<table>
<thead>
<tr>
<th>Percent of Final Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 %</td>
<td>Approx. 64 quizzes & 8 extensive and comprehensive discussion assignments due</td>
</tr>
<tr>
<td>25 %</td>
<td>Exam 1</td>
</tr>
<tr>
<td>25 %</td>
<td>Exam 2</td>
</tr>
<tr>
<td>25 %</td>
<td>Exam 3</td>
</tr>
<tr>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Quiz grading:

Following each module, there will be a quiz.

All quizzes should be completed and submitted on blackboard by their due date (usually Wednesday and Saturday of each week except in exam weeks). See the schedule and assignments for further information.

Each question on each quiz is worth 1 point

Discussion grading:

Discussion posts are due by Saturday each week.

You will be given a choice of between 5-6 complex questions where you will attempt to falsify potential answer choices and then discuss and debate your logic and knowledge with your colleagues each week.

You are to choose only ONE question per week out of the total questions given. We do not recommend more than 10 students choosing any one question as by the time the last student posts; it will be difficult to earn a high grade. If a question has many posters already, we suggest choosing a different question.

Grading is based on the discussion board directions and the grading
rubric given.

All grading is categorical in that you can earn 25, 20, 15, 10, 5 or 0 points for your post. See discussion directions and rubric for criteria of each category of grading.

Clarifications for all discussion questions will be given after the assignment due date has past so you can use the clarifications for study purposes before exams.

ALL DISCUSSION POSTS will be entered into plagiarism check software and all suspicious posts will be turned over to Academic Judiciary and any plagiarism or breaches of academic integrity may result in an F for the course.

Exams:

Exams may only be taken on the days and times given. All exams will be video recorded.

You must have a reliable internet connection, a webcam and microphone for all exams.

Students must show their Stony Brook ID or official picture ID before they begin the exam. The exams are closed book. No cell phones, other electronics including watches are permitted.

Students will be required to download any monitoring software to their computer prior to the exam. They will be asked to show their picture ID, to show their surroundings, and to make the statement that they have no other electronics in view or in hearing distance. They must remain alone for the entire exam.

Violations of academic integrity will include but are not limited to:

1) Covering any portion of your ID or failing to show it clearly in the video

2) Utilizing any electronics other than the computer you are taking the exam on and for the purpose of taking that exam. Utilizing any notes, books, etc. or internet sources. Again, exams are closed book.

3) Leaving the room or the seat and out of camera range at any time during the exam.

4) Having others in the room with you

5) Failure to show your immediate surroundings in the video and if/when asked during the exam.
Any and all suspicious activity will be turned over to Academic Judiciary and any plagiarism or breaches of academic integrity may result in an F for the course.

Late Work Policy:
Be sure to pay close attention to deadlines—there will be no make-up quizzes, discussions, or exams accepted without documentation of serious and compelling issues submitted within ONE WEEK OF THE MISSED ASSIGNMENT or EXAM.

Viewing Grades in Blackboard
Points you receive for graded activities will be posted to the Blackboard Grade Book. Click on the My Grades link on the left navigation to view your points.

We will update the online grades each time a grading session has been complete—typically within 5 days following the completion of an activity. You will see an announcement on Blackboard when grades are available.

Letter Grade Assignment

Final letter grades assigned for this course will be based on the percentage of total points earned and may be assigned as follows*:

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Percentage</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Range (A- thru A)</td>
<td>88 and up</td>
<td>Nearly Excellent/Excellent Work</td>
</tr>
<tr>
<td>B Range (B-, B, B+)</td>
<td>75-87%</td>
<td>Mostly good work/good work/very good work</td>
</tr>
<tr>
<td>C Range (C and C+)</td>
<td>58 – 74%</td>
<td>Acceptable Work/marginally good work</td>
</tr>
<tr>
<td>D</td>
<td>45-57%</td>
<td>Poor Work</td>
</tr>
<tr>
<td>F</td>
<td>Below 45%</td>
<td>Failing Work</td>
</tr>
</tbody>
</table>

*NOTE: These letter grades are threshold scores only. Actual final scores needed to earn a certain letter grade may be lowered if warranted based on the difficulty of the exams. In other words, if your final total points in the course equal a 89%, you will not earn less than a grade in the A Range (A- to A).

Part 4: Course Policies

Participation

Students are expected to participate and submit, by the published due dates, all online activities as listed in the weekly assignments. Your participation in the discussions is also required by the due dates noted.
in the assignments. Faculty will clarify all discussions so as to help you clear up any confusion before exams.

All discussion post submissions are monitored for plagiarism through Safe Assign. All cases of possible plagiarism, including cheating on exams, or other violations of academic integrity will be reported to Academic Judiciary and if found guilty, will result in an F in the course. Please be sure all work is in your own words and properly referenced with internal citations and full references. The discussion board grading rubric showing grading criteria is available on Blackboard.

Build Rapport

If you find that you have any trouble keeping up with assignments or other aspects of the course, make sure you let your instructor know as early as possible. As you will find, building rapport and effective relationships are key to becoming an effective professional. Make sure that you are proactive in informing your instructor when difficulties arise during the semester so that we can help you find a solution including potentially dropping the course.

Complete Assignments

All learning assignments for this course will be submitted electronically through Blackboard and dated according to the date/time submitted as shown on Blackboard. Assignments must be submitted by the given deadline. Extensions will not be given beyond the next assignment except under extreme, documented circumstances.

Understand When You May Drop This Course

It is the student’s responsibility to understand when they need to consider dropping from a course. Students are expected to finalize their class schedules by the end of the “Add/Drop” period, which normally ends at the end of the second week of classes during the Fall or Spring semester. The Add/Drop period is shorter during the Summer and Winter Sessions, so always consult the Academic Calendar for the official deadline. Failure to finalize your course registration by the end of the Add/Drop period may have significant consequences; therefore, you should always consult with your Undergraduate College Advisor prior to the Add/Drop deadline if you are having trouble completing your schedule. See the Academic Advising website for more information at https://you.stonybrook.edu/firstyear/chapter-ten-academic-advising/

Incomplete Policy

Under emergency, students may petition for an incomplete grade. Circumstances must be documented and significant enough to merit an
Incomplete. Inform your instructor of any accommodations needed.

Withdrawals from Classes: The academic calendar, published in the Undergraduate Class Schedule, lists various dates that students must follow. Only the Arts and Sciences Committee on Academic Standing and Appeals or the Engineering and Applied Sciences Committee on Academic Standing may grant permission for a student to withdraw from a course after the deadline. The same is true of withdrawals that will result in an academic under-load. A note from the instructor is not sufficient to secure a withdrawal from a course in the above circumstances.

Student Accessibility Support Center Statement

If you have a physical, psychological, medical or learning disability that may impact your course work, please contact Student Accessibility Support Center, ECC (Educational Communications Center) Building, Room 128, (631)632-6748. They will determine with you what accommodations, if any, are necessary and appropriate. All information and documentation is confidential. https://www.stonybrook.edu/commcms/studentaffairs/sasc/facstaff/syllabus.php

Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and Student Accessibility Support Center. For procedures and information go to the following website: https://ehs.stonybrook.edu/programs/fire-safety/emergency-evacuation/evacuation-guide-people-physical-disabilities

Critical Incident Management

Stony Brook University expects students to respect the rights, privileges, and property of other people. Faculty are required to report to the Office of University Community Standards any disruptive behavior that interrupts their ability to teach, compromises the safety of the learning environment, or inhibits students' ability to learn. Faculty in the HSC Schools and the School of Medicine are required to follow their school-specific procedures. Further information about most academic matters can be found in the Undergraduate Bulletin, the Undergraduate Class Schedule, and the Faculty-Employee Handbook.

Academic Integrity/Honesty Statement

Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Faculty is required to report any suspected instances of academic dishonesty to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology & Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required to follow their school-specific procedures. For more
comprehensive information on academic integrity, including categories of academic dishonesty please refer to the academic judiciary website at: http://www.stonybrook.edu/commcms/academic_integrity/index.html

The Biology Department at Stony Brook University takes seriously our responsibility to give students an accurate and fair evaluation of their performance in the course. We therefore have a zero-tolerance policy towards cheating. Anyone caught cheating in any way will be reported to the Academic Judiciary Committee and, if found guilty, given an F for the course

Email Policies

Email sent via Blackboard is the principle way we will officially communicate with you for this course. It is your responsibility to make sure you read your email in your official University email account. For most students that is Google Apps for Education (http://www.stonybrook.edu/mycloud)
If you need technical assistance please contact Client Support at (631) 632-9800 or supportteam@stonybrook.edu

Part 5: Topic Outline/Schedule

Important Note: Refer to the Weekly Assignments on Blackboard for specific lectures and graded assignment due dates for each week. Activity and assignment details will be explained in detail within each week’s corresponding Lecture folders. If you have any questions as to the administration of the course or grading, please contact Prof. Souza at joanne.souza@stonybrook.edu or post your question in the administrative forum on Blackboard for a response within 24 hours.

<table>
<thead>
<tr>
<th>Week #</th>
<th>Lect #</th>
<th>Lecture Name</th>
<th>Text Reading</th>
<th>Lecture Video Modules</th>
<th>Quiz & Discussion</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1 6/22</td>
<td>0</td>
<td>Orientation, Academic Integrity, Exam Location</td>
<td>Syllabus & Course Information</td>
<td>Orientation & Academic Integrity Videos</td>
<td>Disc. Post 1 Introduction</td>
<td>Wednesday June 24th 11:59 PM</td>
</tr>
<tr>
<td>1</td>
<td>Cells, Evolution of Life, Macromolecules, Proteins</td>
<td>Chapters 1 & 2</td>
<td>Module 1A Module 1B Module 1C Module 1D</td>
<td>Quiz 1 – 1A Quiz 2 – 1B Quiz 3 – 1C Quiz 4 – D/E</td>
<td>Wednesday June 24th 11:59 PM</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DNA, Chromosomes Replication, Proofreading and Repair</td>
<td>Chapters 4 & 5</td>
<td>Module 2A Module 2BC Module 2D Module 2E</td>
<td>Quiz 5 – 2A Quiz 6 – 2BC Quiz 7 – 2D Quiz 8 – 2E</td>
<td>Saturday June 27th 11:59 PM</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Gene Expression: Transcription</td>
<td>Chapters 6 & 7</td>
<td>Module 3A Module 3B Module 3C Module 3D</td>
<td>Quiz 9 – 3AB Quiz 10 – 3C Quiz 11 – 3D Discussion 2 Lectures 1-3</td>
<td>Saturday June 27th 11:59 PM</td>
<td></td>
</tr>
<tr>
<td>Week #</td>
<td>Lect #</td>
<td>Lecture Name</td>
<td>Text Reading</td>
<td>Lecture Video Modules</td>
<td>Quiz & Discussion</td>
<td>Due Date</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Week 2 6/29</td>
<td>4</td>
<td>RNA Processing, Protein Folding</td>
<td>Chapter 6</td>
<td>Module 4AB Module 4C Module 4D</td>
<td>Quiz 12 – 4AB Quiz 13 – 4C Quiz 14 – 4D</td>
<td>Wednesday July 1st 11:59 PM</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Research Methods</td>
<td>Chapters 8 & 9</td>
<td>Module 5A Module 5B Module 5C Module 5D</td>
<td>Quiz 15 – 5A Quiz 16 – 5B Quiz 17 – 5C Quiz 18 – 5D</td>
<td>Wednesday July 1st 11:59 PM</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Cell Membranes</td>
<td>Ch10</td>
<td>Module 6A Module 6B Module 6C</td>
<td>Quiz 19 – 6A Quiz 20 – 6B Quiz 21 – 6C</td>
<td>Saturday July 4th 11:59 PM</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Membrane Transport</td>
<td>Ch 11</td>
<td>Module 7A Module 7B Module 7C</td>
<td>Quiz 22 – 7A Quiz 23 – 7B Quiz 24 – 7C Discussion 3 Lectures 4-7</td>
<td>Saturday July 4th 11:59 PM</td>
</tr>
<tr>
<td>Week 3 7/6</td>
<td></td>
<td>Exam 1 Tuesday July 7th</td>
<td>Lectures 1-7</td>
<td>6:30 – 8:15 PM Place see Blackboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Endoplasmic Reticulum</td>
<td>Chapter 12</td>
<td>Module 8A Module 8B Module 8C</td>
<td>Quiz 25 – 8A Quiz 26 – 8B Quiz 27 – 8C</td>
<td>Saturday July 11th 11:59 PM</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Golgi, Lysosomes</td>
<td>Chapters 12 & 13</td>
<td>Module 9A Module 9B Module 9C</td>
<td>Quiz 28 – 9A Quiz 29 – 9B Quiz 30 – 9C Discussion 4 Lectures 8-9</td>
<td>Saturday July 11th 11:59 PM</td>
</tr>
<tr>
<td>Week 4 7/13</td>
<td>10</td>
<td>Post-Trans targeting to nucleus, mitochondria, chloroplasts</td>
<td>Chapters 12 & 13</td>
<td>Module 10A Module 10B Module 10C Module 10D</td>
<td>Quiz 31 – 10A Quiz 32 – 10B Quiz 33 – 10C Quiz 34 – 10D</td>
<td>Wednesday July 15th 11:59 PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cytoskeleton</td>
<td>Chapter 16</td>
<td>Module 12A Module 12B Module 12C Module 12D</td>
<td>Quiz 39 – 12A Quiz 40 – 12B Quiz 41 – 12C Quiz 42 – 12D Discussion 5 Lectures 10-12</td>
<td>Saturday July 18th 11:59 PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immune system</td>
<td>Chapter 24</td>
<td>Module 14A Module 14B Module 14C</td>
<td>Quiz 48 – 14A Quiz 49 – 14B Quiz 50 – 14C</td>
<td>Saturday July 25th 11:59 PM</td>
</tr>
</tbody>
</table>
Course Name

Semester Syllabus

<table>
<thead>
<tr>
<th>Week #</th>
<th>Lect #</th>
<th>Lecture Name</th>
<th>Text Reading</th>
<th>Lecture Video Modules</th>
<th>Quiz & Discussion</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exam 2 Tuesday</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Cell signaling Mechanisms</td>
<td>Chapter 15</td>
<td>Module 16A, Module 16B, Module 16C</td>
<td>Quiz 55 – 16AB, Quiz 56 – 16C</td>
<td>Saturday August 1st 11:59 PM</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Cell Cycle Part 1 Intro</td>
<td>Chapter 17</td>
<td>Module 17A, Module 17B, Module 17C</td>
<td>Quiz 57 – 17A, Quiz 58 – 17BC</td>
<td>Wednesday August 5th 11:59 PM</td>
</tr>
<tr>
<td>Week 7</td>
<td>8/3</td>
<td>Cell Cycle Part 2 G1, S</td>
<td>Chapter 17</td>
<td>Module 18A, Module 18B, Module 18C</td>
<td>Quiz 59 – 18A, Quiz 60 – 18B, Quiz 61 – 18C</td>
<td>Wednesday August 5th 11:59 PM</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Cell Cycle Part 3 G2, M</td>
<td>Chapter 17</td>
<td>Module 19A, Module 19B, Module 19C</td>
<td>Quiz 62 – 19A, Quiz 63 – 19B, Quiz 64 – 19C</td>
<td>Saturday August 8th 11:59 PM</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Cancer</td>
<td>Chapter 20</td>
<td>Module 19A, Module 19B, Module 19C</td>
<td>Quiz 62 – 19A, Quiz 63 – 19B, Quiz 64 – 19C</td>
<td>Saturday August 8th 11:59 PM</td>
</tr>
<tr>
<td>Week 8</td>
<td>8/10</td>
<td>Study for Exam 3</td>
<td></td>
<td></td>
<td></td>
<td>Exam 3 Tuesday 8/11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6:30 – 8:15 PM</td>
<td>Place: See BB</td>
</tr>
</tbody>
</table>

Course policies are subject to change. It is the student’s responsibility to check Blackboard for corrections or updates to the syllabus. Any changes will be posted in Blackboard.