A B.S. and an M.S. in CHEMISTRY in Five Years!

See inside for details

For students with an interest in chemistry and a good GPA

1. Maintain a GPA of 3.0 or better (overall and in your biochemistry, chemistry, or engineering chemistry major)
2. In your junior year, choose a research advisor from the faculty
3. Plan your program of study to include senior research (CHE 495-496), two graduate (500-level) courses and GRD 500 in your senior year.
4. Spend your fifth year in an intensive research program in a sophisticated research environment.
5. Write and defend a thesis.

Get two degrees in five years!

Why a Combination B.S./M.S. Degree Program?

In today’s job market, a research-based M.S. degree can provide an entry into a great job. In some areas of chemistry, there are job openings at the M.S. level even during economically difficult times.

Chemistry, as the central science, plays a critical role in many areas, such as developing new materials (ceramics, high-tech polymers), finding cures for disease (invention of new drugs), understanding biological processes (mode of drug action, fertilization), and detailing the theoretical basis of natural phenomena.

This five-year B.S./M.S. program, intended for those desiring entry into an industrial position, provides a streamlined opportunity to obtain both degrees.

Stony Brook University
College of Arts and Sciences

April 2019
During your junior year:

Choose a research advisor based on your area of interest and a broad range of active research areas.

Fill out a "Five-Year B.S./M.S. Program in Chemistry Application Form," available in the Chemistry Department Main Office.

This form spells out a program of coursework for completion of the B.S. degree and the M.S. degree, including Senior Research (CHE 495-496), two 500-level graduate courses and a 0-credit ethics course (GRD 500) that will be taken during the senior year, and an intensive research experience for the fifth year of the program.

The completed form is signed by the Applicant, Proposed Advisor, and then submitted to the Chemistry Department Office for review by the Undergraduate Program Director and the M.S. Program Director. At the same time, a permission form for CHE 495-496, signed by the Proposed Advisor, and an application form for one graduate-level course must be submitted.

The coursework identified on the application form must be completed by the end of the senior year with a GPA of 3.0 or above, in addition to maintaining a GPA of 3.0 overall, for continuation into the fifth year and the M.S. degree phase of the program. The internal Chemistry Department application is followed by an official application to the Graduate School in the second semester of the senior year.

Research Areas:

Biological
- enzyme design / modification

Chemistry Education

Inorganic
- enzyme active sites
- new structures

Materials
- new polymers
- designed / self-assembling

Medicinal
- anticancer agents
- enzyme inhibitors

Organic
- new methods
- total synthesis

Organometallic
- catalysis
- new synthetic methods

Physical
- instrument design
- spectroscopic methods

Faculty Advisors

- Thomas Allison
- Katherine Aubrecht
- Surita Bhatia
- Elizabeth Boon
- Eszter Boros
- Isaac Carrico
- Karen Chapman
- Melanie Chiu
- Dale Drueckhammer
- Nancy Goroff
- Robert Grubbs
- Benjamin Hsiao
- Jiangyong Jia
- Christopher Johnson
- Francis Johnson
- Peter Khalifah
- Stephen Koch
- Roy Lacey
- Scott Laughlin
- Joseph Lauher
- Erwin London
- Amy Marschilok
- Andreas Mayr
- Ming-Yu Ngai
- Iwao Ojima
- John Parise
- Kathlyn Parker
- Eric Patterson
- Fernando Raineri
- Daniel Raleigh
- Jonathan Rudick
- Nicole Sampson
- Trevor Sears
- Carlos Simmerling
- Esther Takeuchi
- Kenneth Takeuchi
- Peter Tonge
- Jin Wang
- Michael G. White
- Stanislaus S. Wong

Research Areas:

- Biological enzymes
- protein design / modification

- Chemistry Education

- Inorganic enzyme active sites
- new structures

- Materials new polymers
- designed / self-assembling

- Medicinal anticancer agents
- enzyme inhibitors

- Organic new methods
- total synthesis

- Organometallic catalysis
- new synthetic methods

- Physical instrument design
- spectroscopic methods