THE COLLEGE OF ENGINEERING AND APPLIED SCIENCES IS COMPRISED OF SEVEN (7) DIFFERENT DEPARTMENTS OFFERING TEN (10) DIFFERENT MAJORS AND OVER FORTY DIFFERENT MINORS AND SPECIALIZATIONS

<table>
<thead>
<tr>
<th>Program</th>
<th>Department</th>
<th>Program Code</th>
<th>Degree</th>
<th>Major/Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Mathematics & Statistics</td>
<td>Applied Mathematics & Statistics</td>
<td>AMS</td>
<td>BS</td>
<td>Students can major or minor in AMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students can enroll in one of two accelerated programs:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BS/MS in Applied Mathematics and Statistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BS/MPH in AMS and Public Health</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>Biomedical Engineering</td>
<td>BME</td>
<td>BE</td>
<td>Students can major in BME only, non-engineers can minor in Bioengineering</td>
</tr>
<tr>
<td>Chemical & Molecular Engineering</td>
<td>Materials Science & Engineering</td>
<td>CME</td>
<td>BE</td>
<td>Students can major in CME only</td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>Electrical & Computer Engineering</td>
<td>ECE</td>
<td>BE</td>
<td>Students can major in ECE only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students can enroll in the accelerated program:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BS/MS in Computer Engineering</td>
</tr>
<tr>
<td>Computer Science</td>
<td>Computer Science</td>
<td>CSE</td>
<td>BS</td>
<td>Students can major or minor in CSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students can enroll in the accelerated program:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BS/MS in Computer Science</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>Electrical & Computer Engineering</td>
<td>ESE</td>
<td>BE</td>
<td>Students can major or minor in ESE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students can enroll in the accelerated program:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BE/MS in Electrical Engineering</td>
</tr>
<tr>
<td>Engineering Science</td>
<td>Materials Science & Engineering</td>
<td>ESG</td>
<td>BE</td>
<td>Students can major or minor in ESG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students can enroll in the accelerated program:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BE/MS in Engineering Science/Materials Science</td>
</tr>
<tr>
<td>Information Systems</td>
<td>Computer Science</td>
<td>ISE</td>
<td>BS</td>
<td>Students can major or minor in ISE</td>
</tr>
<tr>
<td>Materials Science</td>
<td>Materials Science & Engineering</td>
<td>ESM</td>
<td></td>
<td>Student can minor in ESM only</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>Mechanical Engineering</td>
<td>MEC</td>
<td>BE</td>
<td>Students can major or minor in MEC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students can enroll in the accelerated program:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BE/MS in Mechanical Engineering</td>
</tr>
<tr>
<td>Technological Systems Management</td>
<td>Technology & Society, courses are EST</td>
<td>TSM</td>
<td>BS</td>
<td>Students can major or minor in TSM</td>
</tr>
</tbody>
</table>

Note: Accelerated Programs allow students to double count graduate credits towards both the Undergraduate and Master’s degrees, allowing them to graduate with both degrees in 5 years.
MAJORS AND MINORS IN THE COLLEGE OF ENGINEERING AND APPLIED SCIENCES

Applied Mathematics and Statistics (Major or Minor)
Dr. Estie Arkin P -139 Math Tower 632- 8370 estie@ams.sunysb.edu

The undergraduate program in Applied Mathematics and Statistics aims to give mathematically oriented students a liberal education in quantitative problem solving. The courses in this program survey a wide variety of mathematical theories and techniques that are currently used by analysts and researchers in government, industry, and science. Many of the applied mathematics courses give students the opportunity to develop problem-solving techniques using campus computing facilities. About half of the Applied Mathematics majors enter graduate or professional programs, primarily in statistics, operations research, computer science, and business management. Others go directly into professional careers as actuaries, programmer analysts, management trainees, and secondary school teachers. Students considering secondary school mathematics teaching can major in Applied Mathematics and Statistics or in Mathematics.

Biomedical Engineering (Major only*)
Dr. Molly Frame Room 102 Bioengineering 632-8371 mary.frame@stonybrook.edu

The BME major provides a rigorous, cross-disciplinary training and research environment; the major program provides an engineering education along with a strong background in the biological and physical sciences. It is designed to enhance the development of creativity and collaboration through study of a specialization within the field of biomedical engineering. Teamwork, communication skills, and hands-on laboratory and research experience are emphasized. The curriculum provides students with the underlying engineering principles required to understand how biological organisms are formed and how they respond to their environment. Core courses provide depth within the broad field of biomedical engineering. These are integrated with, and rely upon, course offerings from both the College of Engineering and Applied Sciences and the College of Arts and Sciences. To achieve the breadth of engineering experience expected of Biomedical Engineering graduates, additional elective courses from the College of Engineering and Applied Sciences are required of all Biomedical Engineering students. The Department also offers a five-year combined B.E. /M.S. degree, which can be completed within one additional year of studies beyond the Bachelor’s degree.

*The BME Department offers a minor in Bioengineering designed for non-engineering students.

Chemical and Molecular Engineering (Major only)
Dr. Devinder Mahajan 314 Engineering 632-6269 devinder.mahajan@stonybrook.edu
Dr. Miriam Rafailovich 314 Engineering 632-6269 miriam.rafailovich@stonybrook.edu

The program in Chemical and Molecular Engineering is designed to meet the expanding demand for chemical engineers in the nanotechnology, nutraceutical, pharmaceutical, environmental, and energy industries. It emphasizes engineering at the molecular level rather than traditional large-scale process engineering. In a rigorous crossdisciplinary environment, the program provides students with knowledge in the basic physical sciences, mathematical techniques, and computational modeling tools that form the foundation of modern chemical and molecular engineering. A broad spectrum of courses prepares students to assimilate and apply their knowledge creatively to solve complex problems involving not only scientific but also ethical and moral considerations, and utilizing effective communication skills for working in an interdisciplinary team. Employment opportunities for graduates of the program include high-technology industries and institutions that are engaged in research and advanced manufacturing related to nanotechnology, pharmaceuticals, biotechnology, future fuels, waste management, and the synthesis of new materials. The program’s mission is to serve the community by becoming a resource for regional economic development and to serve the nation by training students who can assume leadership in technological innovation, public service, and ethical standards.
Its goal is to achieve international recognition as a center of excellence in molecularly based chemical engineering education and research.

Computer Engineering (Major only)
Dr. Ridha Kamoua 267 Lgt Engineering 632-8415 ridha.kamoua@stonybrook.edu

The Department’s teaching and research areas include computer engineering, computer networks, microprocessors, computer architecture, communications, signal and image processing, pattern recognition, electronic circuits, solid state electronics, lasers and fiber-optics, electromagnetics, microwave electronics, systems and control, biomedical engineering, VLSI, computer-aided design, parallel and distributed processing, computer vision, and computer graphics. The objective of the computer engineering program is to give students an excellent preparation for professional careers or graduate studies in the computer engineering fields. The programs provide students with depth and breadth of knowledge in engineering science and engineering design as well as in mathematics and the natural sciences. Development of non-technical skills such as communication and teamwork is also emphasized. The curriculum of the computer engineering programs is shared with electrical engineering in the freshman year, and diverges in the sophomore year. Electrical and computer engineers are recruited in diverse fields for a variety of challenging positions: computer engineers design microprocessor-based systems that include a range of consumer products, industrial machinery, and specialized systems such as those used in flight control, automobiles, and in financial institutions. Graduates also pursue advanced degrees in engineering, business, finance, medicine, law, and other professions in which their problem-solving skills and technical knowledge are valuable qualities.

Computer Science (Major or Minor)
Dr. Leo Bachmair 1440 Computer Science 632-8472 leo.bachmair@stonybrook.edu

Computer science is the study of computer systems, including the architecture of computers, development of computer software, information processing, computer applications, algorithmic problem-solving, and the mathematical foundations of the discipline. The Computer Science major provides professional education in computer science to prepare the student for graduate study or for a career in the computing field. Students learn concepts and skills needed for designing, programming, and applying computer systems while also learning the theoretical and mathematical foundations of computer science. They have sufficient freedom in the program to pursue other academic interests in the liberal arts, sciences, and engineering to complement their study of computer science. Many students prepare for their professional careers through internships at local companies. Computer science graduates are recruited heavily, and career opportunities include developing software systems for a diverse range of applications such as: user interfaces; networks; databases; forecasting; web technologies; and medical, communications, satellite, and embedded systems. Many are employed in the telecommunication and financial industries, and some are self-employed as heads of software consulting companies.

Electrical Engineering (Major or Minor)
Dr. Ridha Kamoua 267 Lgt Engineering 632-8415 ridha.kamoua@stonybrook.edu

Similar to Computer Engineering, the Department’s teaching and research areas computer engineering, computer networks, microprocessors, computer architecture, communications, signal and image processing, pattern recognition, electronic circuits, solid-state electronics, lasers and fiber-optics, electromagnetics, microwave electronics, systems and control, biomedical engineering, VLSI, computer-aided design, parallel and distributed processing, computer vision, and computer graphics. The objective of the Electrical Engineering program is to give students an excellent preparation for professional careers or graduate studies in the electrical and computer engineering fields. The programs provide students with depth and breadth of knowledge in engineering science and engineering design as well as in mathematics and the natural sciences. Development of nontechnical skills such as communication and teamwork is also emphasized. The curriculum of the Electrical Engineering program is shared in the freshman year with Computer Engineering and diverges in the sophomore
year. Electrical Engineering students may choose a specialization which is completed in the junior and senior years. Electrical and computer engineers are recruited in diverse fields for a variety of challenging positions: a communications engineer may work on improving the flow of traffic in communications networks; a command and control engineer may work on systems in tactical and traffic control, satellite and surveillance systems, or commercial applications; a circuit design engineer designs, develops, and manufactures electronic circuits for many applications including microcomputers. Graduates also pursue advanced degrees in engineering, business, finance, medicine, law, and other professions in which their problem-solving skills and technical knowledge are valuable qualities.

Engineering Science (Major or Minor)
Dr. Gary Halada 314 Engineering 632-8484 gary.halada@stonybrook.edu

The Department of Materials Science and Engineering offers the Bachelor of Engineering degree program in Engineering Science and several interdisciplinary undergraduate programs in conjunction with other science and engineering departments on campus. The joint programs provide basic training for graduates to enter a wide range of industries or to proceed to graduate studies in engineering fields. They are aimed at the materials aspect of mechanical engineering, electrical engineering, physics, and chemistry. Engineering Science students can choose to specialize in biomedical engineering, mechanical and manufacturing engineering, electrical engineering, materials science and engineering, civil and environmental engineering, nanoscale engineering, engineering management, or engineering research. Reflecting the breadth and variety of topics falling within the domain of engineering science, the Department also offers six minors that afford undergraduate students the opportunity to enhance their engineering or science studies with knowledge in a specific area. In addition to the minor in Materials Science, the Department offers minors in Biomaterials; Electronic, Optical, and Magnetic Materials; Manufacturing Engineering; Environmental Engineering; and Physical Metallurgy. Each is detailed under a separate heading in the alphabetical listings of Approved Majors, Minors, and Programs. The program mission is aimed toward providing an engineering education which thoroughly covers fundamental aspects of engineering design, physical and chemical sciences, mathematics, and materials science and engineering, while also providing flexibility so that students can create a program tailored to their particular academic and career interests in a traditional or emerging discipline. The program is designed to provide core competency and skills in communication, design, and research while preparing students to participate in a rapidly evolving high-technology environment.

Information Systems (Major or Minor)
Dr. Robert Kelly 1440 Computer Science 632-8470 robert.kelly@stonybrook.edu

The Information Systems major, which is housed in the Department of Computer Science, prepares its graduates to design and build computerized data processing and decision support systems. The program is technically oriented, emphasizing the design and implementation aspects of large-scale information systems as well as the more traditional managerial and organizational issues, and it balances development of system engineering skills with learning to deliver reliable systems on time and within budget. Throughout the program, students are exposed to diverse application areas ranging from traditional business, finance, and accounting through telecommunications, networks, multimedia, and database management, to computer-aided design and industrial production management systems.

Materials Science (Minor only)
Dr. Gary Halada 314 Engineering 632-8484 gary.halada@stonybrook.edu

The development of new materials and research into the engineering applications of materials are critical to a wide variety of industries including aerospace, automotive, energy, electronics, environmental, medical instrumentation, advanced computing, and defense-related companies. Without a clear understanding of the relationship between material structure, properties, and processing, achieving the performance necessary to
meet the needs of current and future high technology applications would be impossible. For this reason, industrial and research laboratories value graduates with an understanding of materials science and engineering issues in addition to their other engineering or physical science knowledge.

Mechanical Engineering (Major or Minor)

Dr. Jon Longtin
113 Lgt Engineering
632-8310
jon.longtin@stonybrook.edu

Mechanical engineering is one of the core disciplines of engineering and it encompasses a large number of sub-disciplines that are at the heart of both traditional and leading edge technologies. It is a broad profession concerned with activities such as energy conversion, power generation, design, and manufacturing. The theoretical and technical bases of knowledge include the pure sciences, mathematics, and the engineering sciences, especially the mechanics of solids and fluids, thermodynamics, and kinematics. Mechanical engineering requires aptitude and interest in the physical sciences and the language of mathematics, and the ability to apply these to societal needs. While the majority of our graduates are immediately employed in industry, a significant percentage pursues graduate study. Most of the students entering graduate schools continue with mechanical engineering studies. However, some go to law, business, and medical schools. The mechanical engineering curriculum provides students with a core education in mathematics and the physical sciences along with a broad sequence of courses covering thermal processes and fluid mechanics, mechanical design, solid mechanics, and the dynamic behavior and control of mechanical systems. Students also take courses that introduce them to the use of advanced computational methods for engineering design and analysis as well as data processing and analysis. A series of laboratory courses introduces them to sensors and electronics, modern instrumentation and experimental techniques used in engineering for tasks ranging from product design, evaluation, and testing to research. In addition, students can select electives to provide either higher level academic training in preparation for graduate school or a broader exposure to subjects related to engineering practice to enhance their preparation for a job after graduation.

Technological Systems Management (Major or Minor)

Dr. Ted Teng
347A Harriman
632-8770
tian-lih.teng@stonybrook.edu

The program integrates a foundation in the natural sciences, engineering, applied sciences, or environmental studies with applications in technology systems, assessment, and management. The major prepares students for careers in government, industry, or education in positions such as manager of computer network systems, manager of information systems, quality control specialist, systems or environmental analyst, technical sales representative, or technology trainer/educator—in short, all professions and business ventures that are dependent on technological applications and implementation and in which project management is key to success. Students are also prepared for advanced study in areas such as business, law, education, policy analysis, and industrial or environmental management. The Department’s focus is on technological advances that shape every facet of modern life. Students develop understanding of the characteristics, capabilities, and limitations of current and emerging technologies. Successful practices in government, industry, education, and personal life depend on such understanding. The Department applies engineering concepts that underlie technological change and that form the bridge from engineering to other disciplines. Effective management of modern technologies requires use of tools from many domains: science and engineering, information technologies, economics, legal and regulatory practice, psychology and sociology, design and assessment.

Other Popular Minors in the CEAS include:

- Biomaterials
- Electronical, Optical, and Magnetic Materials
- Engineering Chemistry
- Environmental Engineering
- Manufacturing Engineering
- Nanotechnology Studies
The College of Engineering and Applied Sciences at Stony Brook University is **unique** from the other University colleges/schools for the following reasons:

1. CEAS students must fulfill the Skill 1 and Skill 2 requirements; they do **not** need to complete the Skill 3 and Skill 4 requirements.

2. All CEAS students must take the following DEC Categories:
 a. DEC A1 and DEC A2 English Composition: Fulfilled by WRT 101 and WRT 102 (2 courses)
 b. DEC B Interpreting Texts in the Humanities (1 course)
 c. DEC C Mathematical and Statistical Reasoning (1 course)
 i. This category is satisfied by the mathematical requirements in each of our majors
 d. DEC E Natural Sciences (2 courses)
 i. This category is satisfied by the natural science requirements in each of our majors
 e. DEC F Social and Behavioral Sciences (1 course)
 i. For MEC, ISE and TSM majors, the DEC F is included in their major requirements
 f. DEC G Humanities (1 course)
 g. DEC H Implications of Science and Technology (1 course)
 i. For BME, ECE, ESE, ESG and TSM majors, the DEC H is included in their major requirements
 h. DEC I European Traditions (1 course)
 i. *Note: In choosing courses to satisfy D.E.C. I and J, CEAS students must take one with a humanities designator and one with a social and behavioral sciences designator.*
 i. DEC J The World Beyond European Traditions (1 course)
 i. *Note: In choosing courses to satisfy D.E.C. I and J, CEAS students must take one with a humanities designator and one with a social and behavioral sciences designator.*

3. Only CSE and ISE Majors who matriculate in the Spring 2006 semester or later must take a DEC D Understanding the Fine and Performing Arts (1 course).

4. Only AMS, CSE, ISE, and TSM majors as well as students taking a second Baccalaureate degree in the College of Engineering and Applied Sciences must take a DEC K American Pluralism (1 course). Students taking their first BE degree do not need a DEC K.
COLLEGE OF ENGINEERING AND APPLIED SCIENCES

Social and Behavioral Sciences/Humanities Categories

for

DEC I and DEC J

*All CEAS majors when choosing courses to satisfy the D.E.C. I and D.E.C. J requirements must select one with a humanities designator and one with a social and behavioral sciences designator.

** Please note the departments listed below offer courses that satisfy many DEC requirements. When choosing courses for this rule, be certain they are a DEC I or a DEC J.

Social and Behavioral Sciences

Asian & Asian American Studies
AFS African Studies (S indicates SBS)
ANT Anthropology
CNS China Studies (Chinese Studies)
ECO Economic
EHM Environmental Humanities Courses 314, 330, 331
HIS History
JDS Judaic Studies (S indicates SBS)
LAC Latin American/Caribbean Culture
LIN Linguistics
POL Political Science
SAS South Asian Studies
SOC Sociology
SSI Social Sciences Interdisciplinary
WST Women’s Studies (excluding course WST 315)

Humanities

Asian & Asian American Studies
AFH African Studies (H indicates Hum)
ARH, ARS Art
CCS Cinema and Cultural Studies
CHI Chinese Language
CLL Classics of Literature
CLS Classics
CLT Comparative Studies in Literature
DAN Dance
EGL English
EUR 201 - European Studies
FRN French Language
GER German Language
HBW Hebrew Language
HMC Health Sciences Center Courses 331, 361
HUE European Literature
HUF French Literature
HUG German Literature
HUI Italian Literature
HUL Romance Languages
HUM Humanities courses
HUR Russian Literature
HUS Spanish Literature
JNH Japanese Studies (H indicates Hum)
JRN Journalism
KRH Korean
MUS Music
PHI Philosophy
RLS Religious Studies
RUS Russian Language
SPAN Spanish
THR Theatre Arts
WST Women’s Studies (course 315 only)

1 Updated 3/10/11
ADDITIONAL GRADUATION/DEGREE REQUIREMENTS

Students graduating from our majors must fulfill the *same* University requirements as the College of Arts and Sciences, School of Journalism, College of Business, and School of Marine and Atmospheric Sciences as follows:

Students must complete the following requirements to graduate with the BE or BS degree from CEAS:

1. **Residence Requirement:** After the 57th credit, at least 36 credits must be earned at Stony Brook.
 a. At least seven engineering courses (those with the designator BME, CME, ESE, ESG, ESM, or MEC) and/or approved technical elective courses must be completed in the College of Engineering and Applied Sciences at Stony Brook.
 b. For the majors in biomedical, computer, electrical, and mechanical engineering, at least five of the seven courses must be offered by the department of the student’s major. The following courses may not be used to meet this requirement: ESE 211, 314, and 324; ESG 217, 312, and 316; MEC 200, 316 and 317; and ESE, ESG, BME, and MEC 300, 440, and 441.
 c. BME, ESE, ESG, and MEC 440 and 441 must be taken at Stony Brook.

2. **Grade Point Average (g.p.a.) Requirement:** A minimum cumulative grade point average of 2.00 is required.

3. **Upper-Division Credit Requirement:** students must earn at least 39 credits in upper-division courses (numbered 300 and higher).
 a. As part of these upper division credits, students in majors leading to the B.E. degree must complete a defined number of technical elective courses in their major; the number of TE courses varies from major to major but is generally between 3 and 5 courses.

4. **Upper-Division Writing Requirement:** This is often fulfilled by the 300 technical writing courses in the CEAS majors.
CEAS POLICIES AND PROCEDURES
Undergraduate Student Office
127 Engineering Building
631-632-8381
Office Hours Mon-Fri 8:30 AM - 5 PM
Advising Hours Mon-Fri 10 AM – 4 PM
Walk-ins or appointments welcome

Advising for all CEAS Students
1. DEC/university requirement advising for graduation
2. General advisement for processing of petitions, transfer credit evaluations, etc.
3. Students are referred to appropriate departments for major/minor requirements
4. Students in Academic Jeopardy each semester must meet with the Director of Undergraduate Studies or one of the CEAS Advisors
 a. This includes all students on academic warning, probation, suspension, dismissal and first, second and conditional reinstatement

Petition Processing for all CEAS Students
Students within CEAS may petition for the following, with appropriate documentation. Petition turnaround time is usually 48-72 hours.
1. Late registration (permission from instructor on dept. letterhead required)
2. Late course addition (permission from instructor on dept. letterhead required)
3. Late withdrawal
4. Course overload/underload
5. DEC waiver/substitution
6. Third or more time course repeat

Petitioning to add a research class, TA or Internship (499, 475/476,488) requires permission of instructor on departmental letterhead along with instructor’s section number and number of credits.

Students must pick up the approved/denied petition from the CEAS Undergraduate Student Office. Students must then take the approved petitions directly to the Bursar and Registrar’s offices and must pay any assigned fees.

Registration
1. For students to be added to courses that are full during the add/drop period, appropriate faculty must submit student name and ID number to department administrator to grant permission in People Soft.
 a. Permission is at the sole discretion of department instructor and NOT CEAS.
2. CEAS students may not take any courses in the major, including technical electives, under the P/NC option. Only Open Electives may be taken under the P/NC option, most of our CEAS courses do not allow for the P/NC option, even if the student is not a CEAS major.
3. Students who wish to rematriculate to CEAS must complete the CEAS Rematriculation Form available from the Registrar’s Office, students will be assigned a new matriculation date after one semester of absence from the University and will be responsible for the academic requirements in effect at the time of their return.
 a. Students will be required to meet with a advisor before registering for classes
 b. Students who withdraw from the University and return at a later date to complete degree requirements are required to have formally reevaluated all courses more than six years old that were taken at Stony Brook or elsewhere to fulfill major requirements
c. Students whose g.p.a was below a 2.0 at the time of their withdrawal must petition to the CEAS Undergraduate Student Office for permission to rematriculate.

Transfer Credit Evaluation Processing
1. Students will need to complete a “Transfer Course Evaluation Form” for each course being considered for Stony Brook equivalency.
2. Completed forms should be submitted directly to the major department for proper evaluation.
3. For *International transfer course evaluations* the student must first have an international advisor in the Undergraduate Transfer Office sign off on the Transfer Course Evaluation Form in the required section of the form. This is REQUIRED. The student may then continue with having the course equivalency determined by a faculty within the appropriate department.

Academic Dishonesty for all CEAS Students
All Academic Dishonesty claims for CEAS courses must be filed through the CEAS Undergraduate Student Office. Appropriate documentation must be submitted to the CEAS Undergraduate Student Office in order to substantiate a claim of academic dishonesty.

CEAS Scholarships and Internships
Please encourage students to visit the Undergraduate Student Office in Engineering 127 for scholarship information, internships and help with resumes. All CEAS available continuing student scholarships are posted on the CEAS website and blackboard site, where the applications may be downloaded.