Engineering Science (ESG)

Major in Engineering Science
Department of Materials Science and Engineering, College of Engineering and Applied Sciences
CHAIRPERSON: Michael Dudley UNDERGRADUATE PROGRAM DIRECTOR: Gary P. Halada ADMINISTRATIVE ASSISTANT: Lynn Allopenna
E-MAIL: Lynn.Allopenna@stonybrook.edu WEB ADDRESS: http://www.matscieng.sunysb.edu

Minors of particular interest to students majoring in Engineering Science: Biomaterials (BES), Electronic, Optical, and Magnetic Materials (ECOM), Manufacturing Engineering (MFE), Materials Science (ESM), Nanotechnology Studies (NTS), Physical Metallurgy (PME), Environmental Engineering.

Faculty
Clive R. Clayton, Leading Professor, Ph.D., University of Surrey: Structure and properties of materials; thin film processing.
Michael Dudley, Professor, Ph.D., University of Warwick: Synchrotron X-ray topography; defects in single crystals.
Charles Fortmann, Associate Professor, Ph.D., Stanford University: Solid State Physics, Protein Dynamics.
Richard J. Gambino, Professor and Principal Research Scientist, M.S., Polytechnic Institute of New York: Magnetic thin films; magneto-optical properties.
Dilip Gersappe, Associate Professor, Ph.D., Northwestern University: Polymer science; computational methods in materials science.
Pelagia Irene Gouma, Associate Professor, Ph.D., University of Birmingham: Microstructural characterization of advanced materials; electron microscopy; microanalysis.
Gary P. Halada, Associate Professor, Ph.D., Stony Brook University: Surface analysis; synchrotron X-ray and infrared spectroscopies; environmental nanotechnology; molecular spectroscopy.
Herbert Herman, Professor Emeritus, Ph.D., Northwestern University: Materials engineering; surface engineering; physical metallurgy.
Franco P. Jona, Professor Emeritus, Ph.D., Eidgenossische Technische Hochschule: Solid-state physics; modern materials.
Tadanori Koga, Assistant Professor, Ph.D., Kyushu University: Synchrotron X-ray and neutron scattering; green polymer processing; control of methane hydrate formation.
Devinder Mahajan, Research Professor, Ph.D., University of British Columbia: Molecular and nano metal synthesis; liquid-phase catalysis.
Alexander Orlov, Assistant Professor, Ph.D., University of Cambridge: Physical and Environmental Chemistry.
Miriam Rafailovich, Distinguished Professor, Ph.D., Stony Brook University: Polymer surfaces and interfaces.
Sanjay Sampath, Professor, Ph.D., Stony Brook University: Thermal spray technology; tribology; functionally graded materials.
Leslie L. Seigle, Professor Emeritus, D.Sc., Massachusetts Institute of Technology: Thermodynamics.
Jonathan C. Sokolov, Professor, Ph.D., Stony Brook University: Polymer surfaces and interfaces.
Albert Tobin, Part-time Professor, Ph.D., Columbia University: Composites and ceramics.
T.A. Venkatesh, Assistant Professor, Ph.D., Massachusetts Institute of Technology: Nanomaterials, Smart Materials, Materials for MEMS and biomedical applications.
David Welch, Part-time Professor, Ph.D., University of Pennsylvania: Kinetics of diffusion; energetics; crystal lattice defects; radiation effects.
Christopher Weyant, Assistant Professor, Ph.D., Northwestern University: Thermal spray coatings, tribocorrosion, high temperature degradation.

Affiliated Faculty
Benjamin Chu, Chemistry

Adjunct Faculty
Estimated number: 20

Teaching Assistants
Estimated number: 20

The Department of Materials Science and Engineering offers the Bachelor of Engineering degree program in Engineering Science and several interdisciplinary undergraduate programs in conjunction with other science and engineering departments on campus. The joint programs provide basic training for graduates to enter a wide range of industries or to proceed to graduate studies in engineering fields. They are aimed at the materials aspect of mechanical engineering, electrical engineering, physics, and chemistry. Engineering Science students can choose to specialize in biomedical engineering, mechanical and manufacturing engineering, electrical engineering, materials science and engineering, civil and environmental engineering, nanoscale engineering, and engineering management. Reflecting the breadth and variety of topics falling within the domain of engineering science, the Department also offers seven minors that afford undergraduates the opportunity to enhance their engineering or science studies with knowledge in a specific area. In addition to the minor in Materials Science, the Department offers minors in Biomaterials; Electronic, Optical, and Magnetic Materials; Manufacturing Engineering; Environmental Engineering; Physical Metallurgy; and Nanotechnology Studies. Each is detailed under a separate heading in the alphabetical listings of Approved Majors, Minors, and Programs.

The program mission is aimed toward providing an engineering education which thoroughly covers fundamental aspects of engineering design, physical and chemical sciences, mathematics, and materials science and engineering, while also providing flexibility so that students can create a program tailored to their particular academic and career interests in a traditional or emerging discipline. The program is designed to provide core competency and skills in communication, design, and research while preparing students to participate in a rapidly evolving high-technology environment.

Program Educational Objectives
Alumni of the ESG program should be engaged in the following activities:

1. Conducting successful careers in engineering or science-related disciplines, by recognizing and responding to emerging markets and technologies or completing graduate studies in top ranked institutions.
2. Contributing to the development of globally competitive economies on a regional and/or national scale.
3. Leading interdisciplinary research, design, and/or policy-making teams in government, academic, or industrial settings.
4. Engaging in life-long learning activities, including professional society membership and support, conference participation, and service to the community.

www.stonybrook.edu/ugbulletin 205
Program Outcomes
Engineering programs must demonstrate that their students attain:

a. an ability to apply knowledge of mathematics, science, and engineering;
b. an ability to design and conduct experiments, as well as to analyze and interpret data;
c. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability;
d. an ability to function on multidisciplinary teams;
e. an ability to identify, formulate, and solve engineering problems;
f. an understanding of professional and ethical responsibility;
g. an ability to communicate effectively;
h. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context;
i. a recognition of the need for, and an ability to engage in, life long learning;
j. a knowledge of contemporary issues; and
k. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

More details about program educational objectives and outcomes can be found at http://www.matscience.sunysb.edu/abet/.

In addition to preparation for graduate studies in engineering and materials science, the program in engineering science prepares students for a variety of employment opportunities as it is particularly suited to the nature of modern manufacturing processes in industry as well as to scientific institutions and laboratories. Throughout the curriculum, students develop skills needed to participate in the research experience and are encouraged to become involved in the many state-of-the-art research facilities associated with the Department, including world-class laboratories in polymer engineering, thermal spray research, surface science and engineering, nanotechnology, semiconductor materials and crystal growth, and environmental materials engineering. Graduates of the program, trained to understand the materials and forces of nature and to apply that knowledge to practical problem solving, occupy engineering, scientific, and management positions in development, manufacturing, and marketing in major corporations in areas including communications, computing, and aerospace. Small and medium-sized companies also rely on the expertise of materials scientists in design and manufacturing. In addition, some graduates apply their knowledge to patent law and consulting. About ten percent of the program’s graduates pursue advanced degrees in engineering research as well as in law, business, and medicine. The program in engineering science is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

Courses Offered in Engineering Science (ESG)
See the Course Descriptions listing in this Bulletin for complete information.

ESG 100 Intro to Engineering Science
ESG 111 C Programming for Engineers
ESG 198 Fundamentals of Engineering Chemistry
ESG 199 Introduction to Undergraduate Research
ESG 201-H Engineering Responses to Society
ESG 217 Engineering Science Design I
ESG 281 Engineering Introduction to the Solid State
ESG 300 Writing in Engineering Science
ESG 301-H Sustainability of the Long Island Pine Barrens
ESG 302 Thermodynamics of Materials
ESG 312 Engineering Laboratory
ESG 316 Engineering Science Design II: Methods
ESG 332 Materials Science I: Structure and Properties of Materials
ESG 333 Materials Science II: Electronic Properties
ESG 339 Thin Film Processing of Advanced Materials
ESG 375 Fundamentals of Professional Engineering
ESG 440, 441 Engineering Science Design III, IV
ESG 487 Cooperative Research in Technological Solutions

Courses Offered in Materials Science (ESM)
See the Course Descriptions listing in this Bulletin for complete information.

ESM 212 Introduction to Environmental Materials Engineering
ESM 213 Studies in Nanotechnology
ESM 299 Directed Research in Materials Science
ESM 325 Diffraction Techniques and Structure of Solids
ESM 334 Materials Engineering
ESM 335 Strength of Materials
ESM 336 Electronic Materials
ESM 350 Advanced Engineering Laboratory
ESM 353 Biomaterials: Manufacture, Properties, and Applications
ESM 355 Materials and Processes in Manufacturing Design
ESM 369 Polymer Engineering
ESM 378 Materials Chemistry
ESM 450 Engineering Systems Laboratory
ESM 475 Undergraduate Teaching Practicum
ESM 488 Cooperative Industrial Practice
ESM 499 Research in Materials Science

Acceptance into the Major in Engineering Science
Freshman and transfer applicants who have specified their interest in the Engineering Science major may be accepted directly into the major upon admission to the University. Students in good academic standing who were admitted to the University but not immediately accepted into the major may apply for acceptance in any semester, but priority for admission to the Engineering Science major is given to those students who have: 1) completed AMS 161 and PHY 132 or their equivalents, 2) earned a g.p.a. of 3.00 in all mathematics and physics courses with no more than one
grade in the C range, and 3) received completed course evaluations for all transferred courses that are to be used to meet requirements for the major.

Requirements for the Major in Engineering Science (ESG)
The major in Engineering Science leads to the Bachelor of Engineering degree.

Completion of the major requires approximately 93 credits, in addition to any credits needed for General Education (D.E.C.) and other University requirements.

A. Core
1. Mathematics
 AMS 151, 161; AMS 261 or MAT 203; AMS 361 or MAT 303

Note: The following alternate calculus course sequences may be substituted for AMS 151, 161 in major requirements or prerequisites:
 MAT 125, 126, 127
 or MAT 131, 132
 or MAT 141, 142
 or MAT 171

2. Natural Sciences
 PHY 131/133 and 132/134; PHY 251
 or ESG 281; ESG 198

Notes:
 a. The physics course sequence
 PHY 125, 126, 127 or 141, 142 is acceptable in lieu of PHY 131/133, 132/134
 b. The chemistry course sequence
 CHE 131, 132, and 133 or CHE 141, 142, and 143 is acceptable in lieu of ESG 198.

3. Computer Science: ESG 111
 Note: CSE 114 or CSE 130 or ESE 124 may be substituted with permission of the department.

4. Engineering Science
 ESG 100; ESG 312; ESM 350; ESM 450; and the following eight courses:
 Materials Science and Engineering
 ESG 302 or CME 304,
 ESG 332, ESG 333, ESG 339
 Electrical Engineering and
 Electronic Properties
 ESE 271, ESM 336
 Mechanical Engineering and
 Properties
 MEC 260, ESM 335

5. Engineering Synthesis and Design
 ESG 217, 316, 440, 441; ESM 355

B. Engineering Specialization and Technical Electives
The area of specialization, composed of five technical electives including at least two design-oriented courses, (or four electives plus the upper-division prerequisite in electrical engineering, ESE 372, or mechanical engineering, MEC 363) must be declared in writing by the end of the junior year. It is selected in consultation with a faculty advisor to ensure a cohesive course sequence with depth at the upper level.

The seven areas of specialization are biomedical engineering, civil and environmental engineering, electrical engineering, materials science and engineering, mechanical and manufacturing engineering, nanoscale engineering, and engineering management.

C. Upper-Division Writing Requirement:
ESG 300 Writing in Engineering Science
All degree candidates must demonstrate skill in written English at a level acceptable for Engineering Science majors. The Engineering Science student must register for the writing course ESG 300 concurrently with ESG 312. The quality of writing in the technical reports submitted for ESG 312 is evaluated and students whose writing does not meet the required standard are referred for remedial help. Detailed guidelines are provided by the Department. If the standard of writing is judged acceptable, the student receives an S grade.

Courses with a # must be completed with a grade of C or higher.
courses to learn the fundamentals of biology and bioengineering.

1. One of the following two-course specializations may be substituted only with the approval of the undergraduate program director:
 1. AMS 151, 161; PHY 131/133 and 132/134; ESG 217, 302, 312, 332, 440, 441
 2. Each of the five required technical electives offered by the college.

Areas of Specialization

Each area of specialization requires two design-related courses and three elective courses above those used toward Requirement A, Core. Other technical electives may be substituted only with the approval of the undergraduate program director.

Biomedical Engineering

Biomedical engineering is the application of various engineering disciplines to biomedical problems, requiring sound understanding of an engineering discipline coupled with principles of biology and medicine. Students utilize elective courses to learn the fundamentals of biology and bioengineering.

1. One of the following two-course design sequences must be completed.
 a. ESM 334 Materials Engineering
 ESM 335 Strength of Materials
 b. MEC 310 Introduction to Machine Design
 MEC 410 Design of Machine Elements
 c. MEC 305 Heat and Mass Transfer
 MEC 364 Introduction to Fluid Mechanics
2. Three courses from the following:
 BIO 202 Fundamentals of Biology: Molecular and Cellular Biology
 BIO 203 Fundamentals of Biology: Cellular and Organ Physiology
 BIO 328 Mammalian Physiology
 BME 301 Bioelectricity
 BME 303 Engineering Methods in Biomechanics
 BME 304 Genetic Engineering
 BME 305 Biofluids

2. Three technical electives chosen from:
 ESM 353 Biomaterials: Manufacture, Properties, and Applications
 ESM 488 or 499 (See Note)
 ESG 440/441 Engineering Science Design III/IV (See Note)
 EST 392 Engineering and Managerial Economics

Note: Three credits of research (ESM 499 or 488) may be used as a technical elective with permission of the undergraduate program director.

Environmental Engineering Track:

1. Two required courses:
 a. ESM 212 Intro to Environmental Materials Engineering (or CME 318 Chemical Engineering Fluid Mechanics or MEC 364 Introduction to Fluid Mechanics or BME 305 Biofluids)
 b. CHE 312 Physical Chemistry
 c. CHE 312 Physical Chemistry

2. Three technical electives chosen from:
 CME 318 Chemical Engineering Fluid Mechanics or MEC 364 Introduction to Fluid Mechanics or BME 305 Biofluids may be taken as a technical elective if not taken as a required course
 CME 314 Chemical Engineering Thermodynamics II
 ISE 320 Information Management
 AMS 322 Groundwater Modeling
 GEO 316 Geochemistry of Surficial Processes
 GEO/MAR 318 Engineering Geology and Coastal Processes
 MAR 301 Environmental Microbiology
 MAR 336 Marine Pollution
 MAR 394 Environmental Toxicology and Public Health
 ATM 397 Air Pollution and its Control
 CHE 361 Nuclear Chemistry
 CHE 362 Nuclear Chemistry Laboratory
 ESM 334 Materials Engineering
 ESM 488 Cooperative Industrial Practice (3 credits)
 or ESM 499 Research in Materials Science (3-4 credits)
 or other departmental independent research with permission of the program director
 ESG 440, 441 Engineering Science Design III, IV (See Note)
ES 218 Digital Systems Design and ES 380 Embedded Microprocessor Systems Design I
b. ES E 305 Deterministic Signals and Systems and ESE 315 Control Systems Design
2. ES 372 Electronics
3. Two courses chosen from the following:
 ESE 304 Applications of Operational Amplifiers
 ESE 306 Random Signals and Systems
 ESE 307 Analog Filter Design
 ESE 310 Electrical Circuit Analysis II
 ESE 311 Analog Integrated Circuits
 ESE 316 Digital Devices and Circuits
 ESE 319 Introduction to Electromagnetic Fields and Waves
 ESE 332 Semiconductor Device Characterization
 ESE 350 Electrical Power Systems
 ESE 352 Electromechanical Energy Converters
 ESE 358 Computer Vision
 ESE 362 Optoelectronic Devices and Optical Imaging Techniques
 ESE 381 Embedded Microprocessor Systems Design II
 ESE 440/441 Engineering Science Design III/IV (See Note)
EST 392 Engineering and Managerial Economics

Note: ESG 440/441 Engineering Science Design III/IV counts for one technical elective with permission of the instructor and the undergraduate program director.

Materials Science and Engineering
This specialization provides the opportunity for in-depth study of the relationship between performance-properties-processing in materials engineering and its applications.

1. One of the following two-course design sequences:
 a. ESM 334 Materials Engineering and ESM 335 Strength of Materials
 b. MEC 310 Introduction to Machine Design and MEC 410 Design of Machine Elements
 c. MEC 305 Heat and Mass Transfer and MEC 364 Introduction to Fluid Mechanics
 d. ESE 218 Digital Systems Design and ESE 380 Embedded Microprocessor Systems Design I
 e. ESE 305 Deterministic Signals and Systems and ESE 315 Control System Design

2. Three courses from the following:
 ESM 325 Diffraction Techniques and Structure of Solids
 ESM 333 Biomaterials: Manufacture, Properties, and Applications
 ESM 369 Polymers
 ESM 475 Undergraduate Teaching Practicum
 ESG 440/441 Engineering Science Design III/IV (See Note)
EST 392 Engineering and Managerial Economics

Note: Three credits of research (ESM 499 or 488) may be used as a technical elective with permission of the undergraduate program director.

Nanoscale Engineering
The creation of functional materials and devices which involves controllable processes and transformations at the scale of billionths of a meter promises to become a major focus of future efforts in both engineering and scientific research.

1. Two required courses:
a. ESM 213 Studies in Nanotechnology
b. ESM 334 Materials Engineering

2. Three technical electives chosen from:
 ESM 369 Polymer Engineering
 CHE 301 Physical Chemistry I
 CHE 302 Physical Chemistry II
 CHE 321 Organic Chemistry I
 CHE 322 Organic Chemistry II
 CHE 345 Structure and Reactivity in Organic Chemistry
 BME 381 Nanofabrication in Biomedical Applications
 ESM 488 Cooperative Industrial Practice (3 credits)
or ESM 499 Research in Materials Science (3-4 credits)
or other departmental independent research with permission of the program director
 ESG 440, 441 Engineering Science Design III, IV (see Note)
 EST 392 Engineering and Managerial Economics

Note: ESG 440/441 Engineering Science Design III/IV counts for one technical elective with permission of the instructor and the undergraduate program director.

Engineering Management

Students may take a specialization in Engineering Management consisting of the following courses:

1. 1. Two required courses, EST 392 Engineering and Managerial Economics and ESG 201 Engineering Responses to Society

2. Three technical electives which may be satisfied by the following courses:
 a. BUS 210 Financial Accounting
 b. BUS 330 Principles of Finance
 c. BUS 340 Information Systems in Management
 d. BUS 348 Principles of Marketing
 e. EST 305 Applications Software for Information Management
 f. EST 326 Management for Engineers
 g. EST 327 Marketing for Engineers
 h. EST 391 Technology Assessment
 i. EST 393 Project Management
 j. ISE 330 Information Management
 k. Another upper level course in Business, Technology and Society, or Economics with the permission of the Undergraduate Program Director

Engineering Chemistry

The Engineering Chemistry major combines work in the Department of Materials Science and Engineering and the Department of Chemistry and leads to the Bachelor of Science degree, awarded through the College of Arts and Sciences. See the major entry for additional information.

Physics of Materials

Physics majors may wish to pursue a career in engineering physics, particularly in the application of solid-state physics to materials science and engineering. After taking five courses in the Department of Materials Science and Engineering, the student may become eligible for the master's degree program. See the physics major entry for additional information.

Bachelor of Engineering Degree/Master of Science Degree Program

An engineering science, engineering chemistry, or physics student may apply at the end of the junior year for admission to this special program, which leads to a Bachelor of Engineering or Bachelor of Science degree at the end of the fourth year and a Master of Science degree at the end of the fifth year. In the senior year, a student in the program takes ESM 511 Thermodynamics of Solids and three credits of ESM 599 Research. In addition, the Senior Design project (ESG 440/441) is planned in consultation with the graduate and undergraduate program directors, as well as the thesis advisor (if the student will be taking a thesis option M.S.) to ensure that it meets the needs of the M.S. program. In the fifth year the student takes 24 graduate credits, of which at least 15 credits are coursework and three credits are ESM 599. The advantages of this program over the regular M.S. program are that a student may start his or her M.S. thesis in the senior year, and that he or she needs only 24 credits in the fifth year as opposed to 30 credits for a regular M.S. student. For details of the M.S. degree requirements, see the Graduate Bulletin.