BIO 101-E Human Biology
The major concepts of biology are presented from historical, contemporary, and critical viewpoints. These concepts include the cell, the gene, molecular biology, development, and evolution. The human implications or values associated with each concept are emphasized. Not for major credit.
3 credits

BIO 103-E Introduction to Biotechnology
Gene therapy, genetic modification, cloning, stem cells, and vaccines are covered in this course. Lectures and four supplemental laboratory activities use modern equipment and techniques to illustrate core concepts which class discussions relate to health, society, and public policy. Not for biology major credit.
3 credits

BIO 104-E How Science Works
The course aims at expanding students' knowledge about the methods of the natural sciences and to develop the critical thinking abilities to understand scientific claims presented by the media. Students will learn about scientific discoveries as well as the differences between science and pseudoscience. The course includes lectures and discussions based on textbook material, examination of case studies in science, and discussion of items in the news.
3 credits

BIO 113-E General Ecology
A survey of the principles of ecology in the context of finding solutions to local, national, and global environmental problems. Not for major credit.
3 credits

BIO 115-E Evolution and Society
The historical development of evolutionary thought, the evolutionary diversification of life, and the mechanisms of evolution are presented. The biological, genetic, and other biological principles necessary to comprehend evolutionary concepts are introduced as background. Current controversies over the evidence for evolution are reviewed. Human evolution, medical and agricultural applications of evolutionary theory, and its implications for the development of human and other social systems are considered. Not for major credit.
Advisory Prerequisite: One biology course
3 credits

BIO 150-E The Living World
An exploration of life from organisms to molecules. The connections between biodiversity, molecules, and evolution are examined. Recitations familiarize students with the tools, models, and concepts of modern biology.
Prerequisites: High school biology and chemistry; satisfaction of entry skill in mathematics requirement
3 credits

BIO 201-E Fundamentals of Biology: Organisms to Ecosystems
An introduction to the major groups of living organisms, structure, functions, the ecological roles of organisms in communities and ecosystems, and their evolutionary history are covered. Genetics and demography are discussed in the context of evolution by natural selection.
Prerequisite: Level 3 or higher on the mathematics placement examination
Advisory Prerequisite: High School Biology
3 credits

BIO 202-E Fundamentals of Biology: Molecular and Cellular Biology
The fundamentals of cell biology, biochemistry, and genetics. The biochemical and molecular bases of cell structure, energy metabolism, gene regulation, heredity, and development in living organisms from bacteria to man are discussed.
Prerequisite: Level 3 or higher on the mathematics placement examination or BME 100
Pre-or Corequisite: CHE 123 or 129 or 131 or 141; MAT 125 or higher or AMS 151
3 credits

BIO 203-E Fundamentals of Biology: Cellular and Organ Physiology
The fundamentals of cell and organ physiology in mammalian and non-mammalian organisms. The structure and function of cell membranes and the physiology of cell to cell signaling, cellular respiration, and homeostasis of organs and organisms are examined with an emphasis on the comparative physiology of vertebrates and invertebrates.
Prerequisite: Level 3 or higher on the mathematics placement examination or BME 100
Pre-or Corequisite: CHE 123 or 129 or 131 or 141; MAT 125 or higher or AMS 151
3 credits

BIO 204 Fundamentals of Scientific Inquiry in the Biological Sciences I
First in the foundational laboratory sequence for all biology students and students in related fields. Students will experience the laboratory process, research process, a wide range of laboratory tools, methods, skills, learn to read and write scientific presentations, and collaborate in formal inquiry.
Pre-or Corequisite: BIO 201, 202, or 203; CHE 123 or 129 or 131 or 141
2 credits

BIO 205 Fundamentals of Scientific Inquiry in the Biological Sciences II
Second course in the foundational laboratory sequence for all biology students and students in related fields. Students will experience the laboratory process, research process, a wide range of laboratory tools, methods, skills, learn to read and write scientific presentations, and collaborate in formal inquiry.
Pre-or Corequisite: BIO 204 and BIO 201, 202, or 203
2 credits

BIO 208-H Cell, Brain, Mind
An introduction to the human brain and how it is the target of diseases, drugs, and psychological disturbances. The course explores these topics through a knowledge of basic cell neurobiology. The implications of brain science for human behavior in society are also considered. Not for major credit.
Prerequisite: BIO 101 or 150
Advisory Prerequisite: High school chemistry
3 credits

BIO 301-H Sustainability of the Long Island Pine Barrens
The ecologically diverse Long Island Pine Barrens region provides a habitat for a large number of rare and endangered species, but faces challenges associated with protection of a natural ecosystem that lies in close proximity to an area of human activity that exerts intense development pressure. In this course we will consider the interaction of the ecological, developmental and economic factors that impact the Pine Barrens and the effectiveness of decision support systems in promoting sustainability of the Pine Barrens. This course is offered as BIO 301, GEO 301, ECO 301, and ESG 301.
Prerequisites: BIO 201 or ECO 108 or GEO 101 or 102 or ESG 100 or ECO 198 or CHE 131; and upper division status
3 credits

BIO 310 Cell Biology
The cell is studied as the unit of structure, biochemistry, and intercellular signaling, cell function, and differentiation. The principles of biochemistry and genetics are applied to understanding of nutrition, growth, and development.
Prerequisites: C or higher in BIO 202 and 203; CHE 321 or 331
3 credits

BIO 311 Techniques in Molecular and Cellular Biology
Techniques used in recombinant DNA and cell biology research. Topics include DNA manipulation and analysis, protein expression and analysis, and advanced microscopy.
Prerequisites: BIO 202; BIO 204 and 205 (beginning in fall 2008); CHE 132 or 142; MAT 125 or higher or AMS 151; or permission of instructor
3 credits

BIO 312 Bioinformatics and Computational Biology
This course uses computational methods to analyze current problems and solutions in molecular biology research. Students are exposed to algorithms and tools available for both single gene and larger scale genome research. Emphasis is on practical application. Laboratories allow students to apply their knowledge to real life molecular biology problems.
Prerequisites: BIO 202; BIO 204; BIO 205; BIO 102 or 128 or 132 or 142 or 171 or AMS 161
3 credits

BIO 313 Applications of Molecular and Cellular Biology Techniques
This course uses technologies to explore current problems and solutions in molecular biology research. Students are exposed to algorithms and tools available for both single gene and larger scale genome research. Emphasis is on practical application. Laboratories allow students to apply their knowledge to real world molecular biology problems.
Prerequisites: BIO 202; BIO 203, 311, 312
Advisory Prerequisite: CHE 322
3 credits

BIO 314 Cancer Biology
An examination of the biology of cancer. Emphasis is on molecular and cellular events, such as regulation of gene expression, genome maintenance, cell growth and death, differentiation, cell-cell recognition, signaling and homeostasis, that are frequently disrupted in cancer. Recent advances in diagnosis and therapy will also be discussed.
Prerequisite: BIO 202
3 credits

BIO 315 Microbiology
The organization, structure, energetics, and reproduction of microorganisms. The interactions of bacteria and viruses are discussed.
Prerequisite: BIO 202, CHE 132
3 credits

BIO 316 Molecular Immunology
Structure, function, and organization of the immune response at the molecular and cellular levels. Molecular mechanisms of immunological responses to microorganisms and various disease states are explored.
Prerequisites: BIO 202 and 203
Pre-or Corequisite: CHE 322 or 326
3 credits

BIO 317 Principles of Cellular Signaling
Basic principles of cellular signaling and maintenance of cellular and organismic homeostasis through intracellular and intercellular signaling mechanisms. Emphasis is on relationships between nuclear events and ongoing processes of the cell. The roles of membrane receptors and second-messenger pathways in mediating
such diverse events as bacterial chemotaxis, protozoan locomotion, and secretion are discussed. 

Prerequisites: C or higher in BIO 202 and 203

3 credits

BIO 318-H Bioethics and Policy

Current topics in ethics and policy in medicine and science are presented, discussed, and debated. Guest lectures with specialized expertise are interspersed with student debates on the pros and cons of the issues. Issues such as the use of stem cells, in vitro fertilization, patent rights, public health, and conflicts of interest are discussed.

Prerequisite: BIO 201 or 202 or 203

Advisory Prerequisite: PHI 104

3 credits

BIO 319 Landscape Ecology Laboratory

A computer lab course focusing on spatial concepts, methods, and tools for addressing ecological and environmental problems. The course will be based on fundamental concepts in ecology and environmental science and extend that knowledge, as well as teaching technical skills, including the use of geographic information systems (GIS) software, image processing, spatially explicit modeling, and spatial statistics. The lab exercises will introduce a variety of spatial approaches addressing problems in environmental protection, ecotoxicology, natural resource management, conservation biology, and wildlife management.

Pre- or Corequisite: BIO 201 and BIO 204 and 205

Advisory Prerequisite: MAT 128 or higher

3 credits

BIO 320 General Genetics

An advanced course in genetics for biology majors. General areas to be discussed include transmission genetics, cytogenetics, immunogenetics, molecular genetics, population genetics, and quantitative genetics.

Prerequisite: BIO 202

Pre- or Corequisite: CHE 131 or 141

3 credits

BIO 325 Animal Development

An overview of animal embryonic development, emphasizing molecular mechanisms regulating embryonic growth and differentiation. General areas to be discussed include: molecular basis of human birth defects, cloning, identification of developmental genes, establishing polarity in Drosophila and vertebrates, regulation of cell differentiation, morphogenesis and organ development, and development of cancer.

Prerequisite: C or higher in BIO 202

3 credits

BIO 327 Developmental Genetics Laboratory

Exploration of the fundamental concepts in developmental biology and genetics through a combination of classical and modern molecular genetics approaches. Experiments are conducted using Xenopus and Drosophila, two important animal models for research in developmental biology and genetics. Students gain hands-on experience with the approaches used to investigate processes that control embryonic development on these two model systems, including the use of modern molecular methods for examining the regulation of gene expression during development. Exposure to the genetic approaches that are available in the Drosophila system will include participation in a genetic screen for new mutations.

Prerequisite: BIO 325, BIO 204 and 205 (beginning fall 2008)

Pre- or Corequisite: BIO 320

3 credits

BIO 328 Mammalian Physiology

The basic principles of mammalian physiology. The subject matter includes circulation, respiration, nutrition, excretion (and their control by the nervous and endocrine systems), and sensation and coordination. May not be taken for credit in addition to HBY 350.

Prerequisite: BIO 203

Advisory Prerequisite: CHE 132 or 142

3 credits

BIO 334 Principles of Neurobiology

The ionic basis of nerve potentials, the physiology of synapses, sense organs and effectors, and the integrative action of the nervous system are discussed.

Prerequisites: BIO 203, CHE 131 or 141

3 credits

BIO 335 Animal Physiology Laboratory

Laboratory exercises designed to illustrate principles learned in BIO 328. Topics include muscles and hormones, physiological activities of nerves, circulation, respiration, excretion, digestion, sensory function, and central processes of coordination. One hour of lecture, one hour of recitation, and one three-hour laboratory per week.

Prerequisites: CHE 132, 133; BIO 204 and 205 (beginning fall 2008)

Pre- or Corequisite: BIO 328

3 credits

BIO 338 From Synapse to Circuit: Self-Organization of the Brain

Exploration of basic neural and synaptic mechanisms and the operation of representative brain circuits, using both theoretical approaches and experimental evidence. Particular attention is given to Hebb's Rule, its cellular basis, its consequences for circuit self-organization, and its limits. A solid background in mathematical, physical, or biological science is desirable, but most relevant background material is covered in the course.

Prerequisite: BIO 203 or CHE 132 or PHY 122

Advisory Prerequisite: BIO 334

3 credits

BIO 339 Molecular Development of the Nervous System

An introduction to the molecular events that underlie development and plasticity of both the peripheral and central nervous systems, with a focus on neuronal mechanisms. Molecular and genetic approaches to the analysis of neural induction, neuronal differentiation, neuronal death and survival, neurotrophic factors, synapse formation and plasticity are presented.

Prerequisite: BIO 202

Advisory Prerequisite: BIO 203 or 325

3 credits

BIO 340 Zoology

Aspects of the natural history, morphology, and evolution of selected invertebrates, amphibians, and vertebrates. Three hours of lecture and one three-hour laboratory per week. Not for credit in addition to BIO 343 or 344 if passed with C or higher.

Prerequisite: BIO 201 or MAR 104; BIO 204 and 205 (beginning in fall 2007)

4 credits

BIO 341 Plant Diversity

An introduction to the study of plants, especially green plants, including the origin and evolution of land plants. Topics include cellular structure and function, photosynthesis and respiration, gross anatomy, taxonomy and the diversity of organisms, plant ecology, agriculture. Three hours of lecture and one three-hour laboratory per week.

Prerequisites: BIO 201 and 202 (as offered prior to fall 2007) or BIO 201 and 202 (as offered beginning fall 2007) and BIO 204 and 205

4 credits

BIO 343 Invertebrate Zoology

Aspects of the diversity, comparative and functional morphology, natural history, evolution, and water-land transitions of invertebrates exclusive of arthropods. Three hours of lecture and one three-and-one-half hour laboratory per week.

Prerequisite: BIO 201 or MAR 104; BIO 204 and 205 (beginning fall 2008)

4 credits

BIO 344 Chordate Zoology

Introduction to the diversity, natural history, and evolution of chordates, emphasizing the living vertebrates. Three hours of lecture, discussion and one three-hour laboratory per week.

Prerequisite: BIO 201 (as offered prior to fall 2007) or BIO 201 (as offered beginning fall 2007) and BIO 204 and 205

4 credits

BIO 348 Diversity and Evolution of Reptiles and Amphibians

The course will survey the diversity and natural history of the major groups of reptiles and amphibians, including snakes, lizards, crocodilians, frogs, and salamanders. Extinct groups (such as dinosaurs and pterosaurs) will also be covered. Furthermore, the course will showcase how studies of reptiles and amphibians have increased our general understanding of evolution and ecology, and will illustrate how diverse aspects of organismal biology (such as physiology, ecology, behavior, morphology) evolve and are interconnected.

Prerequisite: BIO 201

3 credits

BIO 350-H Darwinian Medicine

The ecology and evolution of disease, including evolution of human resistance to infection by pathogens, pathogen evolution in response to natural and technological defenses, and the ecological context of disease. Evolutionary phenomena are treated from molecular, organismal, populational, and environmental perspectives.

Prerequisites: BIO 201 and 202

3 credits

BIO 351-H Ecology

An examination of the interactions of living organisms with their physical and biological environments. Special attention is given to population dynamics and the interactions among organisms that determine the structure, function, and evolutionary development of biological communities.

Prerequisite: BIO 201 or permission of instructor

3 credits

BIO 352 Ecology Laboratory

Stresses the collection, analysis, and interpretation of ecological data, mostly in terrestrial settings. Laboratory and field exercises demonstrate the operation of general ecological principles in specific populations and communities. One lecture, one four-hour field trip or laboratory, and one hour of recitation per week. Three all-day Saturday field trips.

Prerequisite: BIO 204 and 205

Pre- or Corequisites: BIO 351; or permission of instructor

3 credits

BIO 353 Marine Ecology

A survey of biotic responses to ecological challenges in different marine realms. Controls of diversity and trophic structure in the marine ecosystem, historical aspects of marine realms, productivity in the oceans, plankton, soft-bottom communities, intertidal habitats, coral reefs, deep-sea environments, and effects of pollution in the ocean are discussed. This course is offered as both BIO 353 and GEO 353.

Prerequisite: BIO 201 or MAR 104

Advisory Prerequisite: BIO 345

3 credits

BIO 354 Evolution

A detailed discussion of the mechanisms of evolution, focusing on the ways in which genetic changes in populations lead to adaptation, speciation, and historical patterns of evolutionary change.

Prerequisite: BIO 201 and 202, or BIO 320

3 credits
BIO 356 Applied Ecology and Conservation Biology Laboratory
A computer laboratory course introducing students to ecological risk analysis and conservation biology. Laboratories are based on interactive software. Computer simulation techniques for addressing problems in applied ecology are emphasized.
Prerequisites: BIO 201 or 202 or 203 (as offered prior to fall 2007) or BIO 201 or 202 or 203 (as offered beginning fall 2007) and BIO 204 and 205; MAT 126 or higher
2 credits

BIO 358-H Biology and Human Social and Sexual Behavior
Major features of human social and sexual behavior are examined from a biological perspective. Insights from ethology, evolutionary biology, neurobiology, and social behavior are synthesized into a picture of human nature and behavior. Implications of this picture for human sexual and social behavior are considered.
Prerequisites: U3 or U4 standing; one of the following: BIO 101, 201, 202, or 203
3 credits

BIO 359 Behavioral Ecology
A consideration of the patterns of animal behavior in relation to ecological circumstances and evolutionary history. Vertebrate examples are emphasized.
Prerequisites: BIO 201 and 203
3 credits

BIO 361 Biochemistry I
First course of a two-semester survey of the major chemical constituents of the cell, including carbohydrates, lipids, and proteins. Emphasis is on enzyme structure, enzyme kinetics, reaction mechanisms, and metabolic pathways.
Prerequisites: C or higher in BIO 202 and C or higher in CHE 322 or 332 or permission of instructor
3 credits

BIO 362 Biochemistry II
Second course of a two-semester survey; BIO 362 treats nucleic acid structure, replication, and transcription, both in vivo and in vitro. The machinery of protein synthesis is also covered, including amino acid activation; transfer RNA; ribosomes; the genetic code; and peptide chain initiation, elongation, and termination.
Prerequisites: C or higher in BIO 361
3 credits

BIO 365 Biochemistry Laboratory
A series of laboratory experiments and discussions designed particularly to complement BIO 361 and 362. This laboratory covers such topics as enzyme kinetics, spectrophotometry, recombinant DNA technology, the polymerase chain reaction and genotyping, cellular extraction of DNA, RNA, and proteins, and analytical biochemistry. Four hours of laboratory and discussion per week.
Prerequisites: BIO 204 and 205 (beginning fall 2008)
Pre- or Corequisite: BIO 310 or 361
2 credits

BIO 367 Molecular Diversity Laboratory
Hands-on experience with methods to detect and analyze molecular (DNA, RNA, protein) variation to study ecology, adaptation, and evolutionary history using natural populations of Drosophila, plankton, and other locally available species.
Prerequisites: BIO 201 and BIO 202 (as offered prior to fall 2007); and BIO 320 or BIO 351 or BIO 354; or BIO 201 and BIO 202 (as offered beginning fall 2007) and BIO 324 and 205, and BIO 320 or BIO 351 or BIO 354
3 credits

BIO 371 Restoration of Aquatic Ecosystems
A field and laboratory course designed to introduce students to field methods in assessing the long-term effects of pollution and restoration of aquatic and marsh systems. Students will work in teams to collaborate on measuring exchange of pollutants between a restored Superfund site and adjacent areas, the long-term effects of ecological restoration, habitat assessment, aquatic community structure in restored and adjacent systems, and long-term evolutionary effects on aquatic pollutants. Other restoration systems will be compared.
Prerequisites: BIO 201, 202, 204, 205
Advisory Prerequisite: BIO 353
4 credits

BIO 380 Entomology
A survey of the anatomy, development, classification, biogeography, physiology, ecology, and evolution of the insects. The laboratory stresses a knowledge of insect diversity and morphology. Three hours of lecture and three hours of laboratory per week.
Prerequisites: BIO 201, 202 (as offered prior to fall 2007) or BIO 201 and 202 (as offered beginning fall 2007) and BIO 204 and BIO 205
4 credits

BIO 385-H Plant Ecology
Basic ecological principles as applied to the biology of individual plants, plant populations, communities, and ecosystems in relation to their environments. Examples from Long Island pine barrens, tropical rain forests, beaches, deserts, and other plant communities are studied. Examination of the connections between human societies and plant communities, which are rapidly being altered or destroyed worldwide.
Prerequisite: BIO 201
Advisory Prerequisite: BIO 351
3 credits

BIO 386-H Ecosystem Ecology and the Global Environment
Ecosystem ecology with an emphasis on biogeochemical cycling in oceans and on land, as well as on biosphere-atmosphere interactions. Topics include earth system processes such as climate and atmospheric composition, the hydrological cycle, cycling of chemicals such as nutrients and metals in the oceans, the soil cycle, and the fate and transport of materials in the atmosphere. Natural and perturbed systems are discussed. This course is offered as both BIO 386 and ENS 311.
Prerequisites: BIO 201, CHE 131
Advisory Prerequisite: MAR 104
3 credits

BIO 401-405 Seminar in Biology
Discussions of a specific area of current interest in biology. The student is required to participate in all class meetings, to submit weekly written reports of discussions, and to prepare and present a major paper. Prerequisites: Permission of instructor
2-3 credits

BIO 407 Colloquium in Ecology and Evolution for Biology Majors
Students attend the weekly departmental colloquia in ecology and evolution. The content of each session is discussed during a separate class meeting. Conducted as a seminar.
Prerequisites: BIO 201, 202 and 203; at least one course from biology major areas 4 or 5 with grades of B or higher; CHE 132: U3 standing as a biology major
2 credits

BIO 444 Readings in Biology and Society
Tutorial readings in the biological sciences. These courses may be repeated, but not more than two credits may be used toward biology major requirements. Limit of one topic per semester.
Prerequisites: Written permission of instructor and undergraduate studies committee
1-2 credits, S/U grading

BIO 446 Readings in Neurobiology and Physiology
Tutorial readings in the biological sciences. These courses may be repeated, but not more than two credits may be used toward biology major requirements. Limit of one topic per semester.
Prerequisites: Written permission of instructor and undergraduate studies committee
1-2 credits, S/U grading

BIO 447 Readings in Molecular, Cellular, and Developmental Biology
Tutorial readings in the biological sciences. These courses may be repeated, but not more than two credits may be used toward biology major requirements. Limit of one topic per semester.
Prerequisites: Permission of instructor and Department of Biochemistry and Cell Biology
1-2 credits, S/U grading

BIO 449 Readings in Ecology and Evolution
Tutorial readings in the biological sciences. These courses may be repeated, but not more than two credits may be used toward biology major requirements. Limit of one topic per semester.
Prerequisites: Written permission of instructor and undergraduate studies committee
1-2 credits, S/U grading

BIO 475 Undergraduate Teaching Practicum in College Biology I
Study of the literature, resources, and teaching strategies in a field of biology, coordinated with a supervised clinical experience in instruction. Not for major credit.
Students may not serve as teaching assistants in the same course twice.
Prerequisites: BIO 475; permission of instructor and undergraduate studies committee
0-3 credits, S/U grading

BIO 476 Undergraduate Teaching Practicum in College Biology II
Study of the literature, resources, and teaching strategies in a field of biology, coordinated with a supervised clinical experience in instruction. Not for major credit.
Students may not serve as teaching assistants in the same course twice.
Prerequisites: BIO 475; permission of instructor and undergraduate studies committee
0-3 credits, S/U grading

BIO 484 Research in Biology and Society
In these courses, the student works under the supervision of a faculty member in developing an individual project that makes use of the knowledge and techniques acquired in previous courses. The student prepares an appropriate report on the project. Any of the courses may be taken for more than two semesters, but no more than four credits of research and internship may be used for biology major requirements. Limit of one topic per semester.
Prerequisites: Written permission of instructor and undergraduate studies committee
0-6 credits, S/U grading

BIO 486 Research in Neurobiology and Physiology
In these courses, the student works under the supervision of a faculty member in developing an individual project that makes use of the knowledge and techniques acquired in previous courses. The student prepares an appropriate report on the project. Any of the courses may be taken for more than two semesters, but no more than four credits of research and internship may be used for biology major requirements. Limit of one topic per semester.
Prerequisites: Written permission of instructor and undergraduate studies committee
0-6 credits, S/U grading

www.stonybrook.edu/ugbulletin 375
BIO 487 Research in Molecular, Cellular, and Developmental Biology

In these courses, the student works under the supervision of a faculty member in developing an individual project that makes use of the knowledge and techniques acquired in previous courses. The student prepares an appropriate report on the project. Any of the courses may be taken for more than two semesters, but no more than four credits of research may be used for biology major requirements. Limit of one topic per semester.

Prerequisite: Permission of instructor and Department of Biochemistry and Cell Biology
0-6 credits, S/U grading

BIO 488 Internship in Biological Sciences

May be repeated up to a limit of 12 credits. Not for biology major credit.
Prerequisites: BIO 201, 202, 203; CHE 132; permission of faculty sponsor and biology internship committee
0-6 credits, S/U grading

BIO 489 Research in Ecology and Evolution

In these courses, the student works under the supervision of a faculty member in developing an individual project that makes use of the knowledge and techniques acquired in previous courses. The student prepares an appropriate report on the project. Any of the courses may be taken for more than two semesters, but no more than four credits of research may be used for biology major requirements. Limit of one topic per semester.

Prerequisite: Written permission of instructor and undergraduate studies committee. Request for committee approval must be submitted no later than two days prior to the last day of the add period as scheduled in the academic calendar.
0-6 credits, S/U grading