Faculty

Danny Bluestein, Associate Professor, Ph.D., Tel Aviv University: Cardiovascular flow mechanics and pathologies; prosthetic devices.

Weiliam Chen, Assistant Professor, Ph.D., University of Michigan: Gene therapy and drug delivery.

Ki Chon, Associate Professor, Ph.D., University of Southern California: Cardiac autonomic nervous system in normal and diseased states; renal autoregulatory dynamics; neuro-respiratory control; medical devices; clinical diagnostic and prognostic applications.

Richard Clark, Professor, M.D., University of Rochester: Tissue engineering; skin cell activation; tissue formation of healing cutaneous wounds.

Anil Dhundale, Assistant Professor, Ph.D., Stony Brook University: Development of diagnostic and research products in biotechnology, pharmaceutical, and medical devices; DNA microarray.

Shmuel Einav, Professor, Ph.D., Stony Brook University: Blood-tissue interaction; vascular prosthetic devices.

Emilia Entcheva, Assistant Professor, Ph.D., University of Memphis: Cardiac cellular electromechanics; cardiac tissue engineering; fluorescence imaging; computer simulations of cellular function.

Michael Hadjiargyrou, Associate Professor, Ph.D., City University of New York: Molecular mechanisms of bone development and regeneration.

Stefan Judex, Assistant Professor, Ph.D., University of Calgary: Adaptation response to mechanical stimuli at the organ, tissue, cellular and molecular levels.

Partap Khalsa, Associate Professor, Ph.D., Worcester Polytechnic Institute: Robotics; haptic interfaces in robotics; neural encoding.

Wei Lin, Research Assistant Professor, Ph.D., Stony Brook University: Noninvasive assessment of bone quality; confocal acoustic scanning technology.

Mary Frame McMahon, Associate Professor, Ph.D., University of Missouri: Microvascular network flow control; nanobiotechnology; tissue engineering of vascular structures.

Lilanne Mujica-Parodi, Assistant Professor, Ph.D., Columbia University: Limbic dysregulation in schizophrenia; physiological/cognitive components of human arousal response; complex systems analysis.

Yingtian Pan, Associate Professor, Ph.D., Huazhong University of Science and Technology: Optical imaging of biological tissue at the cellular level; diagnosis and assessment of tissue growth.

Yi-Xian Qin, Associate Professor, Ph.D., Stony Brook University: Fluid flow of porous structures; ultrasonic-based diagnostics.

Clinton Rubin, Professor, Ph.D., University of Bristol: Adaptation of the skeletal system; therapeutic medical devices.

Helmut Strey, Assistant Professor, Ph.D., Technical University, Munich: Characterization of nanostructured materials for bioseparation; controlled drug delivery; biosensors; DNA sequencing applications.

Adjunct Faculty

Estimated number: 8

Teaching Assistants

Estimated number: 16

The Department of Biomedical Engineering offers the major in Biomedical Engineering, leading to the Bachelor of Engineering (B.E.) degree. The Department also offers a minor in Bioengineering designed for non-engineering students. (See the entry in the alphabetical listings of Approved Majors, Minors, and Programs for the requirements for the minor in Bioengineering.) In a rigorous, cross-disciplinary training and research environment, the major program provides an engineering education along with a strong background in the biological and physical sciences. It is designed to enhance the development of creativity and collaboration through study of a specialization within the field of biomedical engineering. Teamwork, communication skills, and hands-on laboratory and research experience are emphasized. The curriculum provides students with the underlying engineering principles required to understand how biological organisms are formed and how they respond to their environment. Core courses provide depth within the broad field of biomedical engineering. These are integrated with, and rely upon, course offerings from both the College of Engineering and Applied Sciences and the College of Arts and Sciences. To achieve the breadth of engineering experience expected of Biomedical Engineering graduates, additional elective courses from the College of Engineering and Applied Sciences are required of all Biomedical Engineering students.

The Department also offers a five-year combined B.E./M.S. degree, which can be completed within one additional year of studies beyond the Bachelor’s degree.

The combined B.E./M.S. is intended to prepare high-achieving and highly-motivated undergraduate BME students for either doctoral studies or a variety of advanced professional positions. The program is highly selective with admission based on academic performance as well as undergraduate research. Juniors can be admitted into the combined degree program if they satisfy the requirements outlined in the Graduate Bulletin. The requirements for the combined program are the same as the requirements for the B.E. and M.S. degree, except that two graduate 500-level courses replace two 300-level electives, so that six graduate credits are counted toward the undergraduate degree.

Graduates are prepared for entry into professions in biomedical engineering, biotechnology, pharmaceuticals, and medical technology, as well as careers in academia and government. Potential employers include colleges and universities, hospitals, government, research institutes and laboratories, and private industry.
Program Educational Objectives

The undergraduate program in biomedical engineering has the following five specific program educational objectives:

1. Career Preparation: Our graduates will be prepared to excel in bioengineering, bioscience, or medical disciplines in basic and applied research, design, or technology development, representing the fields of academics, government, medicine, law, or industry.

2. Professional Development: Our graduates will emerge as recognized experts in the field of biomedical engineering, and serve in positions of leadership in academics, government, medicine, or industry. Further, our alumni will function successfully as principal members of integrative and interdisciplinary teams.

3. Professional Conduct: Our graduates will hold paramount the health, safety, and welfare of the public, and conduct themselves in a professional and ethical manner at all times. Further, our alumni will communicate effectively to a variety of target audiences through both written and oral media.

4. Societal Contribution: Our graduates will respond and adapt to the scientific and engineering needs of society both nationally and internationally, seek out new opportunities, and contribute to the development of a healthy and globally competitive economy.

5. Life-long Learning: Our graduates will continually build on their undergraduate foundation of science, engineering, and societal understanding, and continue to develop their knowledge, skills, and contributions throughout their professional careers and private lives. This will include active participation in professional societies, attending and making presentations at conferences, and participating in outreach activities within their areas of expertise.

Program Outcomes

To prepare students to meet the above program educational objectives, a set of program outcomes that describes what students should know and be able to do when they graduate, have been adopted. We expect students to gain:

a. the ability to apply knowledge of advanced mathematics, science, biology, physiology, biotechnology, and engineering;

b. the ability to design and conduct experiments from living and non-living systems, as well as to analyze and interpret data;

c. the ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability;

d. the ability to function on multidisciplinary teams;

e. the ability to identify, formulate, and solve problems at the interface of engineering and biology;

f. the understanding of professional and ethical responsibility;

g. the ability to communicate effectively;

h. the broad education necessary to understand the impact of biomedical engineering solutions in a global, economic, environmental, and societal context;

i. the recognition of the need for, and an ability to engage in, life-long learning;

j. a knowledge of contemporary issues;

k. the ability to use the techniques, skills, and modern engineering tools necessary for addressing the problems associated with the interaction between living and/or non-living materials and systems.

More details about program educational objectives and outcomes can be found at http://bme.sunysb.edu/bme/ugrad/index.html#abet.
Courses Offered in Biomedical Engineering
See the Course Descriptions listing in this Bulletin for complete information.
BME 100 Introduction to Biomedical Engineering
BME 201-H Biomedical Engineering and Society
BME 212 Biomedical Engineering Research Fundamentals
BME 300 Writing in Biomedical Engineering
BME 301 Bioelectricity
BME 303 Biomechanics
BME 304 Genetic Engineering
BME 305 Biofluids
BME 313 Bioinstrumentation
BME 353 Biomaterials: Manufacture, Properties, and Applications
BME 381 Nanofabrication in Biomedical Applications
BME 404 Essentials of Tissue Engineering
BME 420 Computational Biomechanics
BME 430 Engineering Approaches to Drug and Gene Delivery
BME 440 Biomedical Engineering Design
BME 441 Senior Design Project in Biomedical Engineering
BME 461 Biosystems Analysis
BME 475 Undergraduate Teaching Practicum
BME 481 Biosensors
BME 488 Biomedical Engineering Internship
BME 499 Research in Biomedical Engineering

Acceptance into the Major in Biomedical Engineering
Freshman applicants who have specified their interest in the major in Biomedical Engineering may be accepted directly into the major upon admission to the University. Freshman and transfer applicants admitted to the University but not immediately accepted into the Biomedical Engineering major may apply for acceptance to the major at any time during the academic year by contacting the director of the undergraduate program. Students in good academic standing may apply in any semester, but priority for admission to the Biomedical Engineering major is given to those students who have:
1. completed MAT 132 and PHY 132/134 or their equivalents;
2. earned a g.p.a. of 3.20 in all mathematics and physics courses with no more than one grade in the C range; and
3. received completed course evaluations for all transferred courses that are to be used to meet requirements of the major.

Requirements for the Major in Biomedical Engineering (BME)
The curriculum begins with a focus on basic mathematics and the natural sciences followed by courses that emphasize engineering science and bridging courses that combine engineering science and design. The sequence of courses culminates with a one-year design experience that integrates the science, engineering, and communication knowledge acquired. The technical electives and additional courses are chosen in consultation with a faculty advisor, taking into consideration the particular interest of the student.

Completion of the major requires approximately 130 credits.

1. Mathematics
   a. AMS 151, 161 Calculus I, II
   b. AMS 261 or MAT 203 or MAT 205 Calculus III
   c. AMS 361 or MAT 303 or MAT 305 Calculus IV
   d. AMS 210 Matrix Methods and Models
   e. AMS 310 Survey of Probability and Statistics
   Note: The following alternate calculus course sequences may be substituted for AMS 151, 161:
      MAT 125, 126, 127
      or MAT 131, 132
      or MAT 141, 142
      or MAT 171

2. Natural Sciences
   a. BIO 202 Fundamentals of Biology: Molecular and Cellular Biology or BIO 203 Fundamentals of Biology: Cellular and Organ Physiology
   b. CHE 131, 132 General Chemistry I, II
   c. PHY 131/133, 132/134 Classical Physics I, II with labs
   Note: The following alternate science sequences may be substituted:
      PHY 125, 126, 127, or PHY 141, 142 in lieu of PHY 131/133, 132/134
      CHE 141, 142, in lieu of CHE 131, 132

3. Computers and Programming
   a. ESG 111 C Programming for Engineers
   or MEC 112 Practical C/C++ for Scientists and Engineers
   or ESE 124 Computer Techniques for Electronic Design
   or CSE 130 Introduction to Programming in C

   b. MEC 203 Technical Drawing and Computer Aided Drafting

4. Engineering
   a. MEC 260 Engineering Statics
   b. MEC 262 Engineering Dynamics
   c. ESE 271 Electrical Circuit Analysis I

5. Biomedical Engineering
   a. BME 100 Introduction to Biomedical Engineering
   b. BME 212 Laboratory Methods in Biomedical Engineering
   c. BME 301 Bioelectricity
   d. BME 304 Genetic Engineering
   e. BME 305 Biofluids
   f. BME 440 Biomedical Engineering Design
   g. BME 441 Senior Design Project in Bioengineering

6. Biomedical Engineering Specializations and Technical Electives
Biomedical engineering students must complete a specialization, composed of at least 30 credits in one of four areas, including at least two 3- to 4-credit design technical elective courses. (See below for the four specializations with course options.) The specialization must be declared in writing by the end of the sophomore year and is selected in consultation with the faculty advisor to ensure a cohesive curriculum with depth at the upper level.

7. Upper-Division Writing Requirement: BME 300 Writing in Biomedical Engineering
All degree candidates must demonstrate skill in written English at a level acceptable for engineering majors. All Biomedical Engineering students must complete the writing course BME 300 concurrently with a selected BME 300-level course. The quality of writing in technical reports

www.stonybrook.edu/ugbulletin 147

As printed January 2007

BIOMEDICAL ENGINEERING

www.stonybrook.edu/ugbulletin 147
submitted for the course is evaluated, and students whose writing does not meet the required standard are referred for remedial help. Satisfactory writing warrants an S grade for BME 300, thereby satisfying the requirement.

**Grading**

All courses taken to satisfy 1 through 6 above must be taken for a letter grade. A grade of C or higher is required in the following courses: AMS 151, 161 or equivalent; BIO 202 or 203; CHE 131, 132 or equivalent; PHY 131/133, 132/134 or equivalent; all BME courses.

**Specializations**

To complete the specialization, students choose from the technical elective course list for one of the four specializations. Other courses may be used towards this requirement with the permission of the undergraduate program director.

### a. Biomechanics

Courses that focus on developing an understanding of mechanical structures and dynamics of biological systems. This specialization is appropriate for students interested in the areas of biofluid mechanics, hard and soft tissue biomechanics, biomaterials, medical prosthetics, or bioinstrumentation.

**Recommended courses:**
- BME 303 Biomechanics
- BME 313 Bioinstrumentation
- BME 381 Nanofabrication in Biomedical Applications
- BME 404 Essentials of Tissue Engineering
- BME 420 Computational Biomechanics
- BME 430 Engineering Approaches to Drug and Gene Delivery
- BME 481 Biosensors
- ESG 302 Thermodynamics of Materials
- ESM 353 Biomaterials
- MEC 363 Mechanics of Solids

**Alternative courses:**
- AMS 331 Mathematical Modeling
- CSE 326 Digital Image Processing
- CSE 332 Introduction to Scientific Visualization
- ESE 315 Control System Design
- ESM 369 Polymers
- ESM 450 Phase Changes and Mechanical Properties of Materials
- MEC 320 Engineering Design Methodology and Optimization
- MEC 402 Mechanical Vibrations
- MEC 410 Design of Machine Elements
- MEC 411 Control System Analysis and Design
- MEC 455 Applied Stress Analysis

### b. Biomaterials

Courses focusing on developing an understanding of various material sciences issues pertinent to biomedical problems, specifically issues of bio-compatibility of materials used in the design of biomedical devices and implants. Students study the basics of biology, organic chemistry, and material science to understand how to apply knowledge acquired to the design of prosthetic devices and materials that will be in contact with living tissues and organs.

**Recommended courses:**
- BME 303 Biomechanics
- BME 313 Bioinstrumentation
- BME 381 Nanofabrication in Biomedical Applications or BME 481 Biosensors
- BME 404 Essentials of Tissue Engineering
- BME 420 Computational Biomechanics
- BME 430 Engineering Approaches to Drug and Gene Delivery
- ESG 332 Materials Science I
- ESM 335 Strength of Materials
- ESM 353 Biomaterials
- ESM 369 Polymers

**Alternative courses:**
- ESG 281 Engineering Intro to Solid State
- ESG 302 Thermodynamics of Materials
- ESG 316 Engineering Science Design II
- ESM 221 Introduction to the Chemistry of Solids
- ESM 309 Thermodynamics of Solids
- ESM 325 Diffraction Techniques and Structure of Solids
- ESM 334 Materials Engineering
- ESM 335 Strength of Materials
- ESM 355 Materials and Processes in Manufacturing Design
- ESM 450 Phase Changes and Mechanical Properties of Materials
- MEC 310 Introduction to Machine Design
- MEC 320 Engineering Design Methodology and Optimization
- MEC 410 Design of Machine Elements
- MEC 455 Applied Stress Analysis

### c. Bioelectricity

Courses focusing on the description of biological cells, tissues, and organisms as complex systems. This specialization is appropriate for students interested in the areas of bioinstrumentation, medical imaging, electrical prosthetics, electromagnetic compatibility, tissue engineering, or bioinformatics.

**Recommended courses:**
- BME 313 Bioinstrumentation
- BME 461 Biosystems Analysis
- CHE 481 Biosensors
- CSE 321 Organic Chemistry
- CSE 377 Introduction to Medical Imaging
- ESE 211 Electronics Laboratory A
- ESE 218 Digital System Design
- ESE 306 Random Signals and Systems
- ESE 314 Electronics Laboratory B
- ESE 315 Control System Design
- ESE 372 Electronics

**Alternative courses:**
- AMS 311 Probability Theory
- ESE 305 Deterministic Signals and Systems
- ESE 324 Electronics Laboratory
- EST 421 Starting the High-Technology Venture

### d. Molecular and Cellular Biomedical Engineering

Courses focus on the application of biochemistry, cell biology, and molecular biology (i.e., recombinant DNA methodology) to the broad fields of genetic engineering, biotechnology, biomaterials, and biosensors. Includes the specific engineering principles that are applied to problems involving structure and function of molecules.
and cells in areas such as tissue engineering, gene therapy, microarray, drug design and delivery, structural biology computational methods, and bioinformatics. Students must take both BIO 202 and 203, as well as CHE 321 and 322.

**Recommended courses:**
(Students should take both BIO 202 and BIO 203.)

- BIO 202 Fundamentals of Biology: Molecular and Cellular Biology
- BIO 203 Fundamentals of Biology: Cellular and Organ Physiology
- BIO 317 Principles of Cellular Signaling
- BME 313 Bioinstrumentation
- BME 381 Nanofabrication in Biomedical Applications
- BME 404 Essentials of Tissue Engineering
- BME 461 Biosystems Analysis
- BME 481 Biosensors
- CHE 321 Organic Chemistry I
- CHE 322 Organic Chemistry II
- CHE 327 Organic Chemistry Laboratory

**Alternative courses:**
- BIO 302 Human Genetics
- BIO 310 Cell Biology
- BIO 311 Techniques in Molecular and Cellular Biology
- BIO 320 General Genetics
- BIO 325 Animal Development
- BIO 328 Mammalian Physiology
- BIO 361 Biochemistry I
- BIO 362 Biochemistry II
- BIO 365 Biochemistry Laboratory
- BME 303 Biomechanics
- BME 430 Engineering Approaches to Drug and Gene Delivery
- CHE 312 Physical Chemistry
- CHE 346 Biomolecular Structure and Reactivity
- CHE 353 Chemical Thermodynamics
- ESG 332 Materials Science I
- BME/ESM 353 Biomaterials: Manufacture, Properties and Applications
- ESM 369 Polymers