Physics (PHY)

Major and Minor in Physics

Department of Physics and Astronomy, College of Arts and Sciences

CHAIRPERSON: Peter Koch ASSISTANT TO THE CHAIR: Pam Burris DIRECTOR OF UNDERGRADUATE STUDIES: Deane Peterson

Assistant to the Director: Elaine Larsen Astronomy Coordinator: James Latimer E-Mail: Deane.Peterson@stonybrook.edu

Office: P-110 Physics Phone: (631) 632-8036, 632-8100 Web Address: http://www.physics.sunysb.edu

Minors of particular interest to students majoring in Physics: Computer Science (CSE), Electrical Engineering (ESE), Materials Science (ESM), Mathematics (MAT), Science and Engineering (LSE)

Faculty

Alexander Abanov, Associate Professor, Ph.D., University of Chicago: Theoretical condensed matter physics.

Philip B. Allen, Professor, Ph.D., University of California, Berkeley: Theoretical solid-state physics; superconductors and superconductivity.

Meigan Aronson, Professor, Ph.D., University of Illinois Urbana-Champaign: Experimental solid-state physics.

Ralf Averbeck, Research Assistant Professor, Ph.D., Universitats Giessen, Germany: Experimental nuclear physics.

Dimitri Averin, Professor, Ph.D., Moscow State University: Solid-state physics.

Thomas Bergeman, Research Professor, Ph.D., Harvard University: Theoretical atomic physics.

Gerald E. Brown, Distinguished Professor, Ph.D., Yale University, D.Sc., University of Birmingham: Theoretical nuclear physics.

Member, Yang Institute for Theoretical Physics.

Abhay Deshpande, Assistant Professor, Ph.D., Yale University: Nucleon spin; heavy ion physics.

Axel Drees, Professor, Ph.D., University of Heidelberg: Experimental nuclear physics; relativistic ions.

Adam Durst, Assistant Professor, Ph.D., Massachusetts Institute of Technology: Theoretical condensed-matter physics.

Roderich Engelmann, Professor, Ph.D., University of Heidelberg: Experimental elementary particle physics.

Aaron Evans, Assistant Professor, Ph.D., University of Hawaii: Observational extragalactic astronomy.

Miriam Forman, Adjunct Professor, Ph.D., Stony Brook University: Cosmic rays.

Alfred S. Goldhaber, Professor, Ph.D., Princeton University: Theoretical physics; nuclear theory; particle physics. Member, Yang Institute for Theoretical Physics.

Vladimir J. Goldman, Professor, Ph.D., University of Maryland at College Park: Experimental condensed matter physics.

Maria Concepcion Gonzalez-Garcia, Associate Professor, Ph.D., Universidad de Valencia: Particle physics phenomenology; neutrino physics. Member, Yang Institute for Theoretical Physics.

Erlend H. Graf, Associate Professor, Ph.D., Cornell University: Experimental low-temperature physics.

Paul D. Grannis, Distinguished Professor, Ph.D., University of California, Berkeley: Experimental high-energy physics; elementary particle reactions.

Michael Gurvitch, Professor, Ph.D., Stony Brook University: Experimental solid-state physics.

Thomas Hemmick, Professor, Ph.D., University of Rochester: Experimental relativistic heavy-ion nuclear physics. Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1996.

John Hobbs, Associate Professor, Ph.D., University of Chicago: Experimental high-energy physics.

Barbara Jacak, Professor, Ph.D., Michigan State University: Experimental nuclear physics; relativistic heavy ions.

Chris Jacobsen, Professor, Ph.D., Stony Brook University: X-ray physics.

Chang Kee Jung, Professor, Ph.D., Indiana University: Experimental high-energy physics.

Peter B. Kahn, Professor Emeritus, Ph.D., Northwestern University: Theoretical physics; nonlinear dynamics.

Janos Kirz, Distinguished Professor, Ph.D., University of California, Berkeley: X-ray optics. Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1976.

Peter M. Koch, Professor, Ph.D., Yale University: Experimental atomic physics; quantum chaos; nonlinear dynamics.

Vladimir Korepin, Professor, Ph.D., Leningrad University: Exactly solvable models in quantum field theory. Member, Yang Institute for Theoretical Physics.

T.T.S. Kuo, Professor, Ph.D., University of Pittsburgh: Nuclear theory. Recipient of the State University Chancellor’s Award for Excellence in Teaching, 2001.

Kenneth M. Lanzetta, Professor, Ph.D., University of Pittsburgh: Observational cosmology.

James Latimer, Professor, Ph.D., University of Texas: Nuclear astrophysics.

Linwood L. Lee, Jr., Professor Emeritus, Ph.D., Yale University: Experimental nuclear structure.

Konstantin Likharev, Distinguished Professor, Ph.D., Moscow State University: Solid-state physics.

James Lukens, Professor, Ph.D., University of California, San Diego: Experimental solid-state physics.

Robert L. McCarthy, Professor, Ph.D., University of California, Berkeley: Experimental elementary particle physics.

Larry McCoy, Distinguished Professor, Ph.D., Harvard University: Statistical mechanics. Member, Yang Institute for Theoretical Physics.

Robert L. McGrath, Professor, Provost and Vice President of Brookhaven Affairs, Ph.D., University of Iowa: Experimental physics; nuclear structure.

Clark McGrew, Assistant Professor, Ph.D., University of California at Irvine: Experimental particle physics; neutrino physics.

John H. Marburger, Professor, former President of Stony Brook University and Director, Office of Science and Technology Policy, White House; Ph.D., Stanford University: Laser theory.

Michael Marx, Professor, Ph.D., Massachusetts Institute of Technology: Experimental high-energy and relativistic heavy-ion physics.

Emilio E. Mendez, Professor, Ph.D., Massachusetts Institute of Technology: Experimental solid-state physics.

Harold J. Metcalf, Professor, Ph.D., Brown University: Atomic physics; laser cooling and trapping; atom optics; precision Stark spectroscopy; lasers and optics teaching. Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1974.

Laszlo Mihaly, Professor, Ph.D., University of Budapest: Experimental solid-state physics. Recipient of the State University Chancellor’s Award for Excellence in Teaching, 2003.

Richard A. Mould, Associate Professor Emeritus, Ph.D., Yale University: Theoretical physics; general relativity; quantum theory of measurements.

Vijay Patel, Research Assistant Professor, Ph.D., Stony Brook University: Experimental solid-state physics.

Peter Paul, Distinguished Service Professor, Ph.D., University of Freiburg: Experimental nuclear physics.

Gilad Perez, Assistant Professor, Ph.D., Weizmann Institute: Theoretical high-energy physics. Member, Yang Institute for Theoretical Physics.
Peter Van Nieuwenhuizen, Distinguished Professor, Ph.D., Utrecht University: Theoretical physics. Member, Yang Institute for Theoretical Physics.

Jacobs Verbaarschot, Professor, Ph.D., University of Utrecht: Nuclear theory.

Frederick M. Walter, Professor, Ph.D., University of California, Berkeley: Observational stellar astronomy.

Thomas Weinacht, Assistant Professor, Ph.D., University of Michigan: Ultrafast optical physics; coherent control of molecular dynamics; time-domain spectroscopy.

William I. Weisberger, Professor Emeritus, Ph.D., Massachusetts Institute of Technology: Theoretical physics. Member, Yang Institute for Theoretical Physics.

Amos Yahil, Professor, Ph.D., California Institute of Technology: Astronomy.

Chiaki Yanagisawa, Research Associate Professor, Ph.D., University of Tokyo: Experimental high energy physics.

Chen Ning Yang, Einstein Professor Emeritus, D.Sc., Princeton University; Ph.D., University of Chicago: Theoretical physics; field theory; statistical mechanics; particle physics. Member, Yang Institute for Theoretical Physics.

Ismail Zahed, Professor, Ph.D., Massachusetts Institute of Technology: Theoretical nuclear physics.

Michael Zingale, Assistant Professor, Ph.D., University of Chicago: Computational astrophysics.

Teaching Assistants

Estimated number: 49

Physics is the study of the basic physical principles that govern our universe. This study uses the language of mathematics and is applied in all other natural sciences (astronomy, chemistry, biology, geology, etc.) and engineering. The objective of the major in Physics is to teach students those principles, and, in general, how to think scientifically about the physical world.

A basic education in physics is also applicable to many other fields, including astronomy, engineering, computer programming, geology, biophysics, medicine, medical technology, teaching, law, business, etc. Since the basic principles of physics do not go out of style, and will be the basis for many new technologies, the Physics major provides the ability to adapt to new conditions; hence its permanent value. After graduation approximately half of our Physics majors go on to graduate school, either in physics or in a related field (such as those mentioned above). The other half initially take positions in industry, but many of them later return to graduate school.

Astronomy

See the Astronomy entry in the alphabetical listings of Approved Majors, Minors, and Programs for Astronomy courses and major requirements.

Courses Offered in Physics

See the Course Descriptions listing in this Bulletin for complete information.

PHY 104 Opportunities in Physics

PHY 112-E Light, Color, and Vision

PHY 113-E Physics of Sports

PHY 114-E Electromagnetism, Waves and Radiation for Sports Science

PHY 115 Physics of Sports Laboratory

PHY 116 Electromagnetism, Wave and Radiation for Sports Science Laboratory

PHY 119-E Physics for Environmental Studies

PHY 121-E, 122-E Physics for the Life Sciences I, II

PHY 123, 124 Physics for Life Sciences Laboratory I, II

PHY 125-E Classical Physics A

PHY 126-E Classical Physics B

PHY 127-E Classical Physics C

PHY 131-E, 132-E Classical Physics I, II

PHY 133, 134 Classical Physics Laboratory I, II

PHY 141-E, 142-E Classical Physics I, II: Honors

PHY 191, 192 Transitional Study

PHY 200 Physics Today

PHY 237-H Current Topics in World Climate and Atmosphere

PHY 251 Modern Physics

PHY 252 Modern Physics Laboratory

PHY 277 Computation for Physics and Astronomy

PHY 287 Introduction to Research

PHY 291 Transitional Study

PHY 300 Waves and Optics

PHY 301, 302 Electromagnetic Theory I, II

PHY 303 Mechanics

PHY 306 Thermodynamics, Kinetic Theory, and Statistical Mechanics

PHY 308 Quantum Physics

PHY 310 Probability and Statistics for Experimental Physics
PHY 311 Connections in Science
PHY 313-H Mystery of Matter
PHY 315-E Mystery of Matter
PHY 335 Electronics and Instrumentation Laboratory
PHY 390 Special Topics in Physics
PHY 403 Nonlinear Dynamics
PHY 405 Advanced Quantum Physics
PHY 407 Physics of Continuous Media
PHY 408 Relativity
PHY 431 Nuclear and Particle Physics
PHY 445 Senior Laboratory
PHY 447 Tutorial in Advanced Topics
PHY 452 Lasers
PHY 472 Solid-State Physics
PHY 475 Undergraduate Teaching Practicum
PHY 487 Research

Requirements for the Major in Physics (PHY)
The major in Physics leads to the Bachelor of Science degree. Each course used to satisfy the major numbered 300 or above must be completed with a grade of C or higher; a maximum of three courses at the 100 or 200 level passed with a grade of C- may be applied to the major.

Completion of the major requires approximately 67 credits.

A. Courses in Physics
PHY 131/133, 132/134 Classical Physics I, II and Laboratories (See Note 1)
PHY 251/252 Modern Physics and Laboratory
AST/PHY 277 Computation for Physics and Astronomy
PHY 300 Waves and Optics
PHY 301 Electromagnetic Theory
PHY 303 Mechanics
PHY 306 Thermodynamics, Kinetic Theory, and Statistical Mechanics
PHY 308 Quantum Physics
PHY 335 Electronics and Instrumentation Laboratory
PHY 445 Senior Laboratory I

Notes:
1. The sequence PHY 125, 126, 127 or PHY 141, 142 may substitute for PHY 131/133, 132/134.
2. At least four courses numbered 300 or above must be taken at Stony Brook.

B. Courses in Mathematics
1. One of the following sequences:
 MAT 125, 126, 127 Calculus A, B, C
or
 MAT 131, 132 Calculus I, II
or
 MAT 141, 142 Honors Calculus I, II
or
 MAT 171 Accelerated Single Variable Calculus
or
 AMS 151, 161 Applied Calculus I, II
2. One of the following:
 MAT 205 Calculus III
or
 MAT 203 Calculus III with Applications
or
 AMS 261 Applied Calculus III
3. One of the following:
 MAT 305 Calculus IV
or
 MAT 303 Calculus IV with Applications
or
 AMS 361 Applied Calculus IV: Differential Equations

Note: Equivalency for MAT courses achieved on the Mathematics Placement Examination is accepted as fulfillment of the corresponding requirements, as indicated in the Course Descriptions section of this Bulletin.

C. Courses in Related Fields
Twelve credits of acceptable physics-related courses that complement a Physics major’s education. A list of acceptable courses is posted in the Physics and Astronomy Undergraduate Office.

D. Upper-Division Writing Requirement
Students are certified as satisfying the upper-division writing requirement by completing a writing project within their major. Scientific research results in journal publications that use a terse language, but physicists and astronomers must also write engagingly in funding applications and in communicating their work to others, and this is what is expected in writing submitted to meet this requirement. Within the first month of the semester in which the student plans to satisfy the requirement, the student should speak with the course instructor or research supervisor about his or her intent to expand upon a course assignment (for example by adding a discussion of the history and significance of a physics experiment) or research project to meet the upper-division writing requirement. If there are questions over the suitability of the proposed writing project, the student should discuss the proposal with the undergraduate program director. Students are encouraged to seek comments on a draft of their text during the course of the semester, and the final text should be submitted to the instructor or research supervisor by the last day of classes for that semester. The course instructor or research supervisor will read the paper for evidence that the student’s writing meets the requirement and will forward the paper and their recommendation to the undergraduate program director for consideration. The undergraduate program director makes the final determination. The satisfaction of the writing requirement is certified independently of the course grade, and is best completed in the junior year.

Honors
To receive the Bachelor of Science in Physics with honors, in addition to having completed all the requirements for the B.S. in Physics a student must satisfy the following:

1. PHY 487 Research
2. Two other 400-level physics courses
3. Overall grade point average of at least 3.30 in all physics courses numbered 300 or higher.

The Research Program
A student desiring to prepare for graduate study in physics has considerable flexibility in the choice of courses. The following sample program is suggested:

Freshman Year
PHY 131/133 Classical Physics I and Laboratory
or
PHY 141 Classical Physics I: Honors
PHY 132/134 Classical Physics II and Laboratory
or
PHY 142 Classical Physics II: Honors
MAT 131 Calculus I
MAT 132 Calculus II

Sophomore Year
PHY 251/252 Modern Physics and Laboratory
Sample Course Sequence for the Major in Physics

Freshman Fall
- First Year Seminar 101 1 Credit
- PHY 131/133 4
- MAT 131 4
- D.E.C. 3
- D.E.C. 3
- Total 15 Credits

Freshman Spring
- First Year Seminar 102 1 Credit
- PHY 132/134 4
- MAT 132 4
- D.E.C. 3
- D.E.C. 3
- D.E.C. 3
- Total 18 Credits

Sophomore Fall
- PHY 251/252 4 Credits
- PHY/AST 277 3
- MAT 205 3
- D.E.C. 3
- D.E.C. 3
- Total 16 Credits

Sophomore Spring
- PHY 300 4 Credits
- PHY 301 3
- PHY 302 3
- PHY 305 3
- D.E.C. 3
- D.E.C. 3
- Total 16 Credits

Junior Fall
- PHY 301 3 Credits
- PHY 303 3
- PHY-related elective 3
- MAT 341 3
- D.E.C. 3
- Total 15 Credits

Junior Spring
- PHY 302 3 Credits
- PHY 308 3
- PHY 335 3
- MAT 342 3
- Elective 3
- Total 15 Credits

Senior Fall
- PHY 487 3 Credits
- PHY elective 3
- PHY-related elective 3
- PHY-related elective 3
- D.E.C. 3
- D.E.C. 3
- Total 15 Credits

Senior Spring
- PHY 445 3 Credits
- PHY elective 3
- PHY-related elective 3
- PHY-related elective 3
- D.E.C. 3
- Total 15 Credits

Introductory Physics Sequences

Physics for the Life Sciences
- PHY 121/123
- PHY 125
- PHY 131/133
- PHY 141
- PHY 126
- PHY 127
- PHY 132/134
- PHY 142
- PHY 251/252

Note: Of the courses mentioned above, MAT 341, MAT 342, PHY 302, and PHY 487 are not required for the B.S. in Physics.

Specialization in Optics
Students majoring in Physics may decide to pursue a specialization in Optics. This specialization is listed on the official transcript.

Students must complete the following courses with a grade of C or better to satisfy the requirements for the specialization:

A. Required Departmental Courses (12 credits)
- PHY 301 Electricity and Magnetism I
- PHY 302 Electricity and Magnetism II
- PHY 335 Electronics and Instrumentation Laboratory
- MAT 341 Applied Real Analysis
- MAT 342 Applied Complex Analysis
- PHY 405 Advanced Quantum Physics
- PHY 445 Senior Laboratory I

At least two courses selected from:
- PHY 403 Nonlinear Dynamics
- PHY 408 Relativity
- PHY 431 Nuclear and Particle Physics
- PHY 447 Tutorial in Advanced Topics
- PHY 472 Solid-State Physics
- PHY 487 Research
PHY 308 Quantum Mechanics I
PHY 452 Lasers

B. Optics-related laboratory experience
PHY 487 Research (at least 3 credits, optics related)

C. One additional elective course:
Either PHY 405 Quantum Mechanics II, or
One of many courses in other departments and also in the College of Engineering and Applied Sciences (CEAS) that could meet the requirements for this additional elective. Advance approval of such courses must be obtained from the Director of Undergraduate Studies. Examples of such courses in the CEAS are: ESE-340, (Communication Theory); ESE-357 (Digital Image Processing); ESE-358 (Computer Vision); ESE-362 (Opto-electronic Devices); ESE-363 (Fiber Optic Communications); and ESM-325 (Diffraction Techniques).

Physics Secondary Teacher Education Program
See the Education and Teacher Certification entry in alphabetical listings of Approved Majors, Minors, and Programs.

Introductory Physics Sequences
The Department of Physics offers four Introductory Physics Sequences. The PHY 121/123, 122/124 sequence is designed specifically for students majoring in biological sciences or pre-clinical programs. Any of the other three sequences (PHY 131/133, 132/134; PHY 141, 142; PHY 125, 126, 127) together with PHY 251/252 constitute an intensive introduction to classical and modern physics for those who may major in Physics, other physical sciences, or engineering. These three Introductory Physics Sequences cover the same material, although the pace is different. The two-semester sequence (PHY 131/133, 132/134 or PHY 141, 142) should be taken only by students who are prepared for a pace considerably faster than that of the PHY 125, 126, 127 three-semester sequence. The PHY 141, 142 sequence is designed for students with the strongest interest and preparation in physics and mathematics. The flow chart shows the four basic Introductory Physics Sequences available. (In the PHY 125, 126, 127 sequence, 126 and 127 may be taken in either order.)

The Minor in Physics (PHY)
The minor in Physics is available for those who want their formal University records to emphasize a serious amount of upper-division work in physics.
All courses offered for the minor must be passed with a letter grade of C or higher. Completion of the minor requires 20 physics credits beyond the Introductory Physics Sequence.

Requirements for the Minor in Physics for students with majors in the College of Arts and Sciences:
1. PHY 251/252 Modern Physics
2. PHY 300 Waves and Optics
3. PHY 301 Electromagnetic Theory
4. PHY 303 Mechanics
5. PHY 335 Electronics and Instrumentation Laboratory
6. One of the following:
 - PHY 306 Thermodynamics, Kinetic Theory, and Statistical Mechanics
 - CHE 302 Physical Chemistry II

Requirements for the Minor in Physics for students with majors in the College of Engineering and Applied Sciences:
1. PHY 251 Modern Physics
2. One of the following:
 - PHY 300 Waves and Optics
 - ESE 321 Electromagnetic Waves and Wireless Communication
 - ESG 281 An Engineering Introduction to the Solid State
3. One of the following:
 - PHY 301 Electromagnetic Theory
 - ESE 319 Introduction to Electromagnetic Fields and Waves
4. PHY 303 Mechanics
5. One of the following:
 - PHY 306 Thermodynamics, Kinetic Theory, and Statistical Mechanics
 - ESM 309 Thermodynamics of Solids
 - MEC 398 Thermodynamics II
6. One of the following:
 - PHY 335 Electronics and Instrumentation Laboratory
 - ESE 314 Electronics Laboratory B