Mechanical Engineering

MEC 100 Introduction to Mechanical Engineering
Introduction to the engineering experience in general and mechanical engineering in particular through lectures by faculty and invited speakers from industry, field trips, films and laboratory demonstrations. Lectures cover creative thinking and problem-solving, design team work, computer utilization, engineering ethics and legal issues, use of libraries and other sources of information, career opportunities in mechanical engineering and related fields, emerging technologies and the cross-disciplinary nature of engineering.

3 credits

MEC 101 Engineering Computing and Problem Solving I
Computer integrated introduction to engineering design and software. The mechanical engineer, professional engineering ethics, and engineering impact on society. Engineering equations, graphs, dimensional analysis, curve fitting, optimization in engineering design. Introduction to vectors and engineering statics, failure, and materials selection. Use of spreadsheets and MATLAB.

2 credits

MEC 102 Engineering Computing and Problem Solving II
Introduction to programming with MATLAB. Control structures, arrays and matrix operations, functions, object-oriented programming, interfacing MATLAB with other languages. Projects include applications in solid mechanics, fluid mechanics, thermodynamics and heat transfer, control theory, and basic design concepts. Emphasizes the interpretation of previous analysis in terms of generating results, making quantitative comparisons, and assessing changes that optimize or otherwise maximize the usefulness of the result.

Prerequisite: MEC 101

2 credits

MEC 104-E Practical Science of Things
A practical introduction to the science and engineering of objects and phenomena in everyday life. The basic principles that underlie the operation of modern devices such as rollercoasters, balloons, vacuum cleaners, airplanes, bicycles, thermostats, air conditioners, automobiles, and GPS systems are developed by investigating how they work. Issues of design, safety, and environmental impact are also discussed.

Prerequisite: Satisfaction of entry skill in mathematics requirement (Skill 1) or satisfactory completion of D.E.C. C

3 credits

MEC 105-E Everyday Science
A practical introduction to the science and engineering of objects and phenomena in everyday life. The basic principles that underlie the operation common to modern devices such as xerographic copiers, tape recorders, computers, microwaves, lasers, CD's, plastics, nuclear weapons, and magnetic resonance imaging (MRI) are developed by investigating how they work. Issues of design, safety, and environmental impact are also discussed.

Prerequisite: Satisfaction of entry skill in mathematics requirement (Skill 1) or satisfactory completion of D.E.C. C

3 credits

MEC 111 Computer Science for Engineers
An introduction to computer science and the use of the computer for solving scientific and engineering-related problems. Students gain experience using the FORTRAN programming language. Primarily for engineering students not planning to take advanced computer science courses. May not be taken simultaneously with CSE 110. Students who have a C or higher in CSE 114 may not take MEC 111.

3 credits

MEC 112 Practical C/C++ for Scientists and Engineers
Introduces computer sciences and the use of the computer for solving scientific and engineering problems using the C/C++ programming language. Students gain experience using graphical interface (GUI) and object-oriented programming concepts. Primarily for engineering students who are not planning to take advanced computer science courses. Students who have earned a C or higher in CSE 114 may not take MEC 112.

3 credits

MEC 160-E Introductory Nuclear Science and Technology
Introduces the basic concepts of nuclear science. Topics include: basic atomic structure; isotopes; mass-energy equivalence; binding energy; decay of radioisotopes; nuclear reactions; fission and fusion; the interaction of radiation with matter; and biological effects of radiation. Discusses nuclear science concepts in the context of relevant applications such as nuclear medicine and imaging, nuclear power, radioactive waste, food irradiation, and weapons. Not intended for science majors.

Prerequisite: MAT 123 or level 4 on the mathematics placement examination

3 credits

MEC 200 Technical Communication in Mechanical Engineering I
Introduction to technical writing and oral communication with topics chosen from mechanical engineering. Includes technical memo and report writing and an introduction to researching sources of information as well as engineering ethics. Emphasizes the development of oral presentation skills.

Prerequisite: MEC major; U3 standing

1 credit, SU grading

MEC 202 Engineering Drawing and CAD I
Introduces methods used to communicate design ideas through the techniques of freehand technical sketching and computer-aided design software. Includes the principles of engineering drawing and sketching for mechanical design and the application of computer-aided design software in developing engineering drawings and mechanical designs.

Prerequisite: MEC major or permission of department

1 credit

MEC 203 Engineering Drawing and CAD II
Application of computer graphics and solid modeling to design and representation of 3D objects, their assembly and tolerance analysis. Includes hands-on experience in the use of CAD software packages for solid modeling.

Prerequisite: MEC 202

2 credits

MEC 260 Engineering Statics

Prerequisite: PHY 131/133 or 141 or 125

Corerequisite: AMS 261 or MAT 203

3 credits

MEC 262 Engineering Dynamics

Prerequisite: MEC 260

3 credits

MEC 280-H Pollution and Human Health
An examination of major environmental pollution problems such as electromagnetic radiation, ozone layer depletion, and global warming, with a specific focus on the resulting effects on human health. Assessment of health risks in relation to the formulation of environmental and workplace regulations is also considered.

Prerequisite: One D.E.C. category E course

3 credits

MEC 290-H Nuclear Technology: History, Society, Medicine, and the Environment
Introduces the history and applications of nuclear technology in our society and addresses the social and environmental implications and issues. Topics include radiation types and sources; biological effects, standards, and radiation protection; fission, breeding, and fusion; nuclear waste; weapons. Discusses current applications including power, food irradiation, medical applications, isotope dating, and advanced applications such as space power and propulsion, accelerators, and antiprotons.

Prerequisite: One D.E.C. category E course

3 credits

MEC 300 Technical Communication in Mechanical Engineering II
Aims to ensure proficiency in the types of communication necessary for success in the engineering profession. Provides students with the ability to apply their knowledge of correct written and spoken English to the diverse situations of communication encountered and used by engineers in the professional workplace.

Prerequisite: WRT 102; MEC major; U3 or U4; MEC 200

1 credit, SU grading

MEC 301 Thermodynamics
Variables that describe the thermodynamic state of a system or control volume, including absolute temperature, internal energy, enthalpy, and entropy are introduced, and basic principles governing the transformations of energy, especially heat and work, are developed. Underlying principles are used to analyze and solve problems related to thermodynamic systems and to determine the changes in properties of the systems and surroundings imposed by changes in inputs, configuration, or constraints.

Prerequisites: AMS 261 or MAT 203; PHY 125 or 131/133 or 141

3 credits
MEC 305 Heat and Mass Transfer
The fundamental laws of momentum, heat and mass transfer, and the corresponding transport coefficients. Principles of steady-state and transient heat conduction in solids are investigated. Laminar and turbulent boundary layer flows are treated, as well as condensation and boiling phenomena, thermal radiation, and radiation heat transfer between surfaces. Applications to heat transfer equipment are covered throughout the course.
Prerequisite: MEC 301 and 364; MEC 102 or 111 or 112, or ESG 111, or ESE 124, or CSE 114 or 130 3 credits

MEC 309 Numerical Methods for Engineering Analysis
Solving nonlinear equations, systems of linear equations, interpolation/extrapolation, curve fitting integration, and differential equations. Special emphasis on the implementation of numerical methods in FORTRAN computer programs to solve computation problems that arise in the engineering design process.
Prerequisites: MEC 102 or 111 or CSE 114 or 130 or ESG 111; AMS 261 or MAT 203; AMS 361 or MAT 303 3 credits

MEC 310 Introduction to Machine Design
Application of graphical and analytical methods to the analysis and synthesis of mechanisms. Covers concepts of degrees of freedom, graphical and analytical linkage synthesis, position, velocity, acceleration, and force analysis of linkage mechanisms. Introduces principles behind the operation of various machine elements such as gears and gear trains, cams, flywheels, roller and journal bearings, couplings, clutches, brakes, belts, and chains and their design, and analysis techniques.
Prerequisites: MEC 102 or 111 or CSE 114 or 130 or ESG 111; MEC 262 (ESG 316 for ESG majors) Pre- or corequisite: MEC 203 3 credits

MEC 316 Mechanical Engineering Lab I: Sensors and Instrumentation
The spatial and temporal resolution of modern instrumentation and sensors that are particular to mechanical engineering. Concepts of static and dynamic response as well as probability, statistics, and the statistical analysis of data are discussed. Includes basic circuit components. Laboratory safety. Students learn to operate instruments for measuring temperature, pressure, flow velocity, displacement, angle, acceleration, and strain. Design project. Laboratory fee required.
Prerequisites: AMS 361 or MAT 303; MEC 363 Corequisites: MEC 301 and 364 4 credits

MEC 317 Mechanical Engineering Laboratory II
Hands-on experience in solid and fluid mechanics and heat transfer. Emphasis is on the understanding of fundamental principles as well as familiarity with modern experimentation. Lectures at the beginning of the course provide background information and theories of experimentation. Student groups perform four experiments each in solid mechanics and in fluid mechanics and heat transfer. Report writing is an integral part of the course, with emphasis on design of experiment, interpretation and presentation of data, error analysis, and conclusions. Laboratory fee required.
Prerequisites: MEC 316 and 364 Corequisite: MEC 305 2 credits

MEC 320 Engineering Design Methodology and Optimization
The general process of engineering design as a systematic and disciplined process. Covers materials related to the formulation of design specifications and criteria; conceptual design and evaluation of the design options; design creativity; formulation of analytical models; simulation and optimization techniques; design for manufacturability; design for reliability; engineering economics; and engineering ethics.
Prerequisites: MEC 102 or 111 or CSE 114 or 130 or ESG 111 Corequisite: MEC 310 3 credits

MEC 323 Internal Combustion Engine
Introduces different types of internal combustion engines and their operations. Topics include the innovative concept of gas generator-expander engine; thermodynamics fundamentals; fuel-air cycle analysis; engine combustion and emission processes; engine operating characteristics. Includes both the relevant fundamental concepts and the extensive practical knowledge base on which engine research, development, and design depend.
Prerequisite: MEC 305 3 credits

MEC 326 Manufacturing Processes and Machining
Prerequisite: ESG 332 4 credits

MEC 350 Energy Conversion and Alternate Energy Technologies
Energy conversion principles, principal energy sources, and energy storage systems. Production technologies of useful energy and useful work with emphasis on technologies based on energy sources other than fossil or nuclear fuels, including direct energy conversion technologies (fuel cells, batteries, hybrid electric vehicles, and MHD generators), solar energy (solar thermal energy and photovoltaics), and wind energy.
Prerequisite: MEC 391 Prerequisite: MEC 301 3 credits

MEC 363 Mechanics of Solids
Stress and deformation of engineering structures and the influence of the mechanical behavior of materials. Concepts of stress and strain, constitutive relations, analysis of statically indeterminate systems, study of simple bars and beams, and stability conditions. Emphasis on force equilibrium, elastic response of materials, geometric compatibility, Mohr’s circle, stresses and deflections in beams, and torsion and buckling of rods. Design for bending, shear, and combined states of stress.
Prerequisite: MEC 290 3 credits

MEC 364 Introduction to Fluid Mechanics
Fundamental properties of fluids and their conservation laws with applications to the design and evaluation of flow of engineering interest. Topics include hydrostatics, surface tension, dimensional analysis and dynamic similarity, Euler’s equation, rotating coordinate systems, boundary layers, lubrication, drag on immersed bodies, open channel and pipe flows, and turbomachinery.
Prerequisite: MEC 282 Pre- or Corequisite: MEC 301 3 credits

MEC 381 Transport and Fate of Pollutants
General mechanisms that describe the physical transport and chemical transformations of pollutants in the air, water, and soil. Major global cycles are also considered from a transport-formation perspective. Specific examples include lake eutrophication, acid rain deposition, river pollution, and the dispersal of air pollutants from single (point) sources and multiple (area) sources.
Prerequisite: AMS 361 or MAT 303 3 credits

MEC 391, 392 Introduction to Automotive Engineering I, II
This year-long course is a review of Society of Automotive Engineers (SAE) Collegiate Design competitions of past years and the rules of specific competitions and other competition-related issues. Selected engineering topics and mathematical/software tools are introduced including their application to solving engineering problems and to achieving design objectives. Students who enroll in MEC 391 must complete MEC 392 in the subsequent semester and receive only one grade upon completion.
Prerequisites to MEC 391: MEC 262 and 363 Prerequisite to MEC 392: MEC 391 1 credit, MEC 391 2 credits, MEC 392 3 credits

MEC 393 Engineering Fluid Mechanics
The application of the principles of fluid mechanics to important areas of engineering practice such as turbomachinery, hydraulics, and wave propagation. Prerequisites: students for advanced coursework in fluid dynamics. Extends the study of viscous effects, compressibility, and inertia begun in MEC 364.
Prerequisite: MEC 364 3 credits

MEC 398 Thermodynamics II

MEC 402 Mechanical Vibrations
Modeling, analysis, and design for mechanical vibrations. Fundamentals of free vibration, harmonically excited vibration, and vibration under general forcing conditions are considered for one degree, two degrees, and multidegree of freedom systems; continuous systems; vibration design strategies including isolation and absorbers. Prerequisites: MEC 262 and 363 3 credits

MEC 406 Energy Management in Commercial Buildings
Basic heating, ventilating, and air-conditioning (HVAC) system design and selection for commercial buildings. Includes both low-rise and high-rise structures. Selection of central plant components and equipment, calculation of space heating and cooling load, computer techniques for estimating annual energy consumption. ASHRAE codes. Building controls. IACet.
Prerequisite: MEC 398 3 credits

www.stonybrook.edu/sg/ubulletin 463
MEC 410 Design of Machine Elements
Application of analytical methods, material science, and mechanics to problems in design and analysis of machine components. Includes the design of mechanical components such as bearings, gears, shafting, springs, fasteners, bolts, clutches, and brakes, and takes into consideration factors such as manufacturability and reliability. Design projects with open-ended and interactive problems are assigned to integrate several machine elements in a system.
Prerequisites: MEC 310 and 363
3 credits

MEC 411 Control System Analysis and Design
Analysis and design of feedback control systems. Topics include system modeling; transfer function; block diagram and signal-flow graph; sensors, actuators, and control circuit design; control system characteristics; and performance; stability analysis; root locus method; Bode diagram; PID and lead-lag compensator design.
Prerequisites: MEC 262, AMS 361 or MAT 303
3 credits

MEC 412 Computer-Aided Design
Prerequisites: MEC 120, CSE 180, or equivalent
3 credits

MEC 420 Turbomachinery and Applications
Classification of turbomachines, rotating flows, aerothermodynamic design of turbomachines, energy transfer between fluid and rotor, axial and radial devices, compressible gas flow, three-dimensional effects, rotordynamics, and blade stresses. Numerical analysis and design issues. Sample devices include propellers, fans, blowers, windmills, and turbines.
Prerequisite: MEC 364
3 credits

MEC 421 Statistical Quality Control and Design of Experiments
Online techniques that determine and control the quality of mass-manufactured products on a real-time basis by means of statistical analysis. Off-line use and applications of the design-of-experiment and Taguchi methods to optimize a product and a process design. The concept of total quality management. Histograms, tests for normality, variables, and attribute control charts, orthogonal arrays, and signal-to-noise arrays. Z-transform for the evaluation of the percentage of nonconforming parts, tests for special causes. Zbar-R chart, and process capability analysis. Acceptance quality level and lobby-lot inspection. This course offered as both AMS 421 and MEC 421.
Prerequisite: MEC 317
3 credits

MEC 422 Thermal System Design
Device design and system design. Quantitative data for system design including operating characteristics of compressors, turbines, heat exchangers, piping systems, internal combustion engines, and other component equipment. Component matching and system simulation. Optimization including thermoeconomic evaluation and energy analysis. Case studies: refrigeration, cooling systems, combined cycles, steam-injected gas turbines.
Prerequisite: MEC 305
3 credits

MEC 440 Mechanical Engineering Design I
Part I of the two-semester capstone design project sequence. Senior students select a project, develop the necessary technical background, and write a proposal, progress reports, and a preliminary design report. Includes an oral presentation on the development and progress of the project. Not counted as a technical elective. Laboratory fee required. The final grade will be assigned at the end of the two course sequence MEC 440-441.
Prerequisites: MEC 300, 310, 317, 320, and 326; MEC major; U4 standing
Corequisites: MEC 410 and 411
3 credits

MEC 441 Mechanical Engineering Design II
Part II of the two-semester capstone design project sequence. Students complete the project design, build and test a prototype, write a mid-term report and a final design report and give an oral presentation. Not counted as a technical elective. Laboratory fee required.
Prerequisite: MEC 440
3 credits

MEC 442 Introduction to Experimental Stress Analysis
The concepts of three-dimensional stress and strain, their transformation laws, and their mutual relationships are discussed in detail. Results from theory of elasticity as pertinent to experimental stress analysis are also presented. Experimental techniques studied include two-dimensional photoelasticity, resistance strain gauge, moire method, brittle coating, and analog methods. The application of different techniques to the measurement of stress and strain in models as well as actual structures is demonstrated. Students form small groups and each group is assigned different laboratory projects to gain experience in various experimental stress analysis methods. Previously offered as MEC 342.
Prerequisite: MEC 363
3 credits

MEC 445 Applied Stress Analysis
A study of linear elastic solids with emphasis on internal stress analysis. Simple boundary value problems at plate structures are analyzed with various solution techniques. Major topics are stress and strain tensors, linear elasticity, principle of virtual work, torsion, stress functions, stress concentration, elementary fracture, and plasticity.
Prerequisite: MEC 363
3 credits

MEC 450 Mechatronics
An introduction to the design, modeling, analysis, and control of mechatronic systems (smart systems comprising mechanical, electrical, and software components). Fundamentals of the basic components needed for the design and control of mechatronic systems, including sensors, actuators, data acquisition systems, microprocessors, programmable logic controllers, and I/O systems, are covered. Hands-on experience in designing and building practical mechatronic systems is provided through integrated lab activities.
Prerequisites: MEC 310 and 316
3 credits

MEC 460 Introduction to Robotics: Theory and Applications
Robot components and mechatronic aspects of robotics (sensors, actuators, end effectors, system integration). Rotation, translation, rigid-body transform. Robot foundations in kinematics and inverse kinematics, dynamics, serial and parallel manipulators and their duality. Introduction to mobile robots and LEGO Robotics, control theories, motion planning, trajectory generation, grasping and manipulation, robotic programming language, industrial robotics, manufacturing automation, and societal impacts. Hands-on projects. Not for credit in addition to CSE 378.
Prerequisites: MEC 262; U4 standing
3 credits

MEC 470 Introduction to Tribology
Focus is on the fundamentals of tribology, the science of surfaces in relative motion, with an introduction to friction, lubrication, and wear. The basics of tribology science: engineering surfaces, contact mechanics, lubrication theory, wear processes and modeling, wear properties of materials, and tribology test methods will be covered. Analysis of tribological aspects of machine components and bearings. Industrial case studies will be presented to place the topics in context to industry and society.
Prerequisites: MEC 363 and 364
3 credits

MEC 475 Undergraduate Teaching Practicum
Students assist the faculty in teaching by conducting recitation or laboratory sections that supplement a lecture course. The student receives regularly scheduled supervision from the faculty instructor. May be used as an open elective only and repeated once.
Prerequisites: U4 standing; a minimum of a 3.00 in all undergraduate courses and the grade of B or better in the course in which the student is to assist; permission of department
3 credits

MEC 488 Mechanical Engineering Internship
Participation in off-campus engineering practice. Students are required to submit a proposal to the department at the time of registration and two term reports before the end of the semester. May be repeated up to a limit of 12 credits.
Prerequisite: Permission of undergraduate program director
3-9 credits, SU grading

MEC 490, 491, 492 Topics in Mechanical Engineering
Treatment of an area of mechanical engineering that expands upon the undergraduate curriculum. Topics may include advanced material in a specialty, development of a specialized experimental technique, or a specific area of design. Topics may vary from semester to semester. Semester supplements to this Bulletin contain specific description when course is offered. May be repeated for credit as the topic changes.
Prerequisite: U3 or U4 standing in a B.E. degree major; permission of department (course prerequisites vary with topic)
1-4 credits per course
MEC 495 Professional Engineering Seminar
Prepares the student to enter the workplace as a practicing engineer. Topics include professional ethics, professional activities, professional engineering licensing, patents, seeking entry-level employment, and exposure to the engineering work environment. Acts in preparation for the EIT/FE exam. Includes speakers from a variety of disciplines, within the College and from industry. 
Prerequisites: CEAS major; U4 standing
1 credit, S/U grading

MEC 499 Research in Mechanical Engineering
An independent research project under the supervision of a mechanical engineering faculty member. Permission to register requires the agreement of the faculty member to supervise the research and submission of a one-page research proposal. May be repeated but only six credits of research electives may be counted as technical electives. 
Prerequisite: Permission of department
0-3 credits