ESE 321 Introduction to Semiconductor Devices
The principles of semiconductor devices. Energy bands, transport properties, and generation recombination phenomena in bulk semiconductors are covered first, followed by junctions between semiconductors and metal-semiconductor. The principles of operation of diodes, transistors, light detectors, and light emitting devices based on understanding of characteristic of physical phenomena in semiconductors. Provides background for subsequent courses in electronics.

Prerequisites: AMS 161 or MAT 127 or 132 or 142 or 171; PHY 127 or 132/134 or 142

3 credits

ESE 271 Electrical Circuit Analysis I
Kirchoff’s Laws, Ohm’s Law, nodal and mesh analysis for electric circuits, capacitors, inductors, and steady-state AC; transient analysis using Laplace Transform. Fundamentals of AC power, coupled inductors, and transformers.

Prerequisites: AMS 161 or MAT 127 or 132 or 142 or 171; PHY 127 or 132/134 or 142

3 credits

ESE 290 Transitional Study
A vehicle used for transfer students to remedy discrepancies between a Stony Brook course and a course taken at another institution. For example, it allows the student to take the laboratory portion of a course for which he or she has had the theoretical portion elsewhere. Open elective credit only.

Prerequisite: Permission of department

1-3 credits

ESE 300 Technical Communication for Electrical and Computer Engineers
Topics include how technical writing differs from other forms of writing, the components of technical writing, technical style, report writing, technical definitions, proposal writing, writing by group or team, instructions and manuals, transmittal letters, memos, abstracts and summaries, proper methods of documentation, presentations and briefings, and analysis of published engineering writing. Also covered in the writing of resumes and cover letters.

Prerequisite: ECE, ESE majors, junior standing; WRT 102

Prerequisite for corequisites: ESE 314 or 324 or 380 or 382

3 credits

ESE 304 Applications of Operational Amplifiers
Design of electronic instrumentation: structure of basic measurement systems, transducers, analysis and characteristics of operational amplifiers, and signal conditioning with operational amplifiers, sampling, multiplexing, A/D and D/A conversion; digital signal conditioning, data input and display, and automated measurement systems. Application of measurement systems to pollution and to biomedical and industrial monitoring is considered.

Prerequisite: ESE 372

3 credits

ESE 305 Deterministic Signals and Systems

Prerequisite: ESE 271

3 credits

ESE 326 Random Signals and Systems
Random experiments and events; random variables, probability distribution and density functions, continuous and discrete random processes; Binomial, Bernoulli, Poisson, and Gaussian processes; system reliability; Markov chains; elements of queuing theory; detection of signals in noise; estimation of signal parameters; properties and application of auto-correlation and cross-correlation functions; power spectral density; response of linear systems to random inputs.

Prerequisite: ESE 305

3 credits

ESE 307 Analog Filter Design
Introduces basic concepts of analog filter theory and implementation. Topics include filter types; transfer functions; Bode plots; implementation of first- and second-order filters using op amps, maximally flat, and equal-ripple filters; frequency transformations; LC ladder, transconductance-C realizations; switched capacitor circuits; and filter sensitivity.

Prerequisites: ESE 305 and 372

3 credits

ESE 310 Electrical Circuit Analysis II
Network elements, graph theory, linear network analysis; fundamental loops and cutsets, matrix solutions, nonlinear network analysis; state variables, small and large signal analysis, numerical methods.

Prerequisite: ESE 271

3 credits

ESE 311 Analog Integrated Circuits
Engineering design concepts applied to electronic circuits. Basic network concepts, computer-aided analysis and design techniques; models of electronic devices; biasing and compensation methods; amplifiers and filters designed by conventional and computer-aided techniques.

Prerequisite: ESE 372

3 credits

ESE 312 Microwave Electronics
Fundamentals of microwave and RF electronics. Includes S-parameter theory, Smith charts, amplifier and oscillator design, matching network synthesis, large-signal and broadband methods, and power combinations. Computer-aided design packages are used throughout the course.

Prerequisite: ESE 372

3 credits

ESE 314 Electronics Laboratory B
Coordinated with, and illustrates and expands upon, concepts presented in ESE 372. Experiments include diode circuits, class A BJT, FET and differential amplifiers as well as analog signal processing. Laboratory fee required.

Prerequisites: ESE 211 and 372

3 credits

ESE 315 Control System Design

Prerequisite: ESE 271

3 credits
ESE 316 Digital Devices and Circuits
Switching characteristics of devices: bipolar transistors, MOSFETs, C.C.D.s. Circuit analysis of leading IC gate technologies: TTL, ECL, MOS, CMOS, dynamic MOS. Interfacing logic families. Application of small-scale ICs in control and timing circuits. Large-scale integrated circuits; organization and characteristics of RAMs, ROMs and PLAs. The use of computer-aided circuit analysis is included.
Prerequisite: ESE 372
3 credits

ESE 319 Introduction to Electromagnetic Fields and Waves
Fundamental experimental results of electromagnetism. Topics include: mathematical formulation of integral laws and derivation and physical interpretation of differential Maxwell equations in free space; interaction of electromagnetic sources and fields; engineering applications; electromagnetic energy and power; generation of electromagnetic fields and waves in unbounded media by known sources; transmission line theory.
Prerequisite: ESE 271
3 credits

ESE 320 Microwave Electronics Laboratory
Introduces microwave measurement techniques as well as the design, fabrication, and experimental characterization of various microwave components. Utilizes microwave CAD techniques for the design of microwave components and for experimental characterization, including the measurement of scattering parameters over a band of frequencies, employing a network analyzer. The first half of the course is in the format of lectures that introduce the concepts and theory behind the experiments. The second half is dedicated to performing the experiments on a rotation basis between various student groups of two or three students per group.
Prerequisite: ESE 319
2 credits

ESE 321 Electromagnetic Waves and Wireless Communication
Covers the wireless radio signal environment; electromagnetic wave propagation in free space and in other media; effects of reflection, scattering, diffraction, and multi-path interference on the characteristics and quality of the received signal; cellular wireless network planning; efficient use and reuse of assigned radio frequency spectrum; effects of transmitting and receiving antenna design; introduction of basic wireless communication techniques to achieve reliable communication.
Prerequisite: ESE 319
3 credits

ESE 322 Automatic Identification Symbologies and Scanning Technologies
Introduces theory and application of important data-capture technologies namely barcodes, biometrics and RFID. Topics to be covered include: architecture of data-capture/Auto ID systems, barcodes; overview of 1-D and 2-D barcodes and other LOS technologies biometrics; fingerprints, iris-scan, voice recognition and smart-cards; radio frequency identification (RFID); fundamentals, near field vs. far field, UHF read range estimation, reader sensitivity limits, tag singulation and multiple access protocols, standards, privacy and security issues in RFID, real time location systems (RTLS).
Prerequisite: ESE 218, 305, and 372
3 credits

ESE 323 RFID Technology for Automatic Identification
This course covers the analysis and design of RFID technologies for automatic identification. Included are the theory of operation, analysis of RFID system components, passive and active tags, frequencies used, air interfaces, coding structures, antenna design, and regulatory compliance.
Prerequisite: ESE 319
3 credits

ESE 324 Electronics Laboratory C
Illustrates and expands upon advanced concepts presented in ESE 324. Experiments include multistage amplifiers, class B and class C power amplifiers, speech processing, active RC and switched-capacitor filters, oscillators, and switching power supplies. Laboratory fee required.
Prerequisite: ESE or ECE major; U3 standing; ESE 211 and 372
2 credits

ESE 330 Integrated Electronics
An overview of the design and fabrication of integrated circuits. Topics include gate-level and transistor-level design; fabrication material and processes; layout of circuits; automated design tools. This material is directly applicable to industrial IC design and provides a strong background for more advanced courses.
Prerequisite: ESE 372
3 credits

ESE 332 Semiconductor Device Characterization
Basic experimental experience in characterization of microelectronic and optoelectronic semiconductor devices including diodes, transistors, light emitting diodes, lasers, and photodetectors. Measurement of I/V and L/I (light-current) device characteristics; practice in the techniques of determining various device parameters; analysis of aggregate experimental data to determine the relationships between device and output characteristics, device band diagrams, and device designs. Includes study of modern methods of silicon and compound semiconductor devices and systems technologies.
Prerequisite: ESE 372
3 credits

ESE 333 Real-Time Operating Systems
Introduces basic concepts and principles of real-time operating systems. Topics include structure, multiple processes, interprocess communication, real-time process scheduling, memory management, virtual memory, file system design, security, protection, and programming environments for real-time systems.
Prerequisite: ESE 124, CSE 214, ESE 380 or CSE 220
3 credits

ESE 337 Digital Signal Processing: Theory
Introduces digital signal processing theory sequences, discrete-time convolution, difference equations, sampling and reconstruction of signals, one- and two-sided z-transforms, transfer functions, and frequency response. Design of FIR and IIR filters. Discrete and fast Fourier transforms and applications.
Prerequisite: ESE 305
3 credits

ESE 340 Basic Communication Theory
Basic concepts in both analog and digital data communications; signals, spectra, and linear networks; Fourier transforms, energy and power spectra, and filtering; AM, FM, and PM; time and frequency multiplexing; discussion of problems encountered in practice; noise and bandwidth considerations; pulse modulation schemes.
Prerequisite: ESE 305 and 306
3 credits

ESE 341 Information Theory and Coding
Statistical characteristics of languages, information sources as random processes, measurement of information, noiseless coding; the binary symmetric channel and other digital channels; channel capacity, introduction to algebraic coding, theory for noisy channels, communication with feedback.
Prerequisite: ESE 306 or AMS 311
3 credits

ESE 342 Digital Communications Systems
Prerequisite: ESE 340
3 credits

ESE 343 Modern Electronic Communications Laboratory
Experimental study of communications systems and components. Design, test, and measurement techniques. AM and FM modulators and demodulators, transmitters, bandwidth measurement, analog and digital signaling equipment. Applications in communication and radar systems.
Prerequisite: ESE 340
Pre-or Corequisite: ESE 342
2 credits

ESE 344 Software Techniques for Engineers
Trains students to use computer systems to solve engineering problems. Includes C/C++ programming languages, UNIX programming environment, basic data structures and algorithms, and object oriented programming.
Prerequisite: ESE 218; CSE 230 or ESE 224
3 credits

ESE 345 Computer Architecture
Starts with functional components at the level of registers, buses, arithmetic, and memory chips, and then uses a register transfer language to manipulate these in the design of hardware systems up to the level of complete computers. Specific topics included are microprogrammed control, user-level instruction sets, 1/O systems and device interfaces, control of memory hierarchies, and parallel processing organizations.
Prerequisites for CSE majors: ESE 220 and ESE 218
Prerequisite for ESE and ECE majors: ESE 380
3 credits

ESE 346 Computer Communications
Basic principles of computer communications. Introduction to performance evaluation of protocols. Protocols covered include those for local, metropolitan, and wide area networks. Introduction to routing, high-speed packet switching, circuit switching, and optical data transport. Other topics include TCP/IP, Internet, Web server design, network security, and grid computing. Not for credit in addition to CSE/ESE 310. This course is offered as both CSE 346 and ESE 346.
Pre-or corequisite for ESE and ECE majors: ESE 306
Pre-or corequisite for CSE majors: AMS 310 or 311
Prerequisite for CSE majors: CSE 220
3 credits

ESE 347 Digital Signal Processing: Implementation
Fundamental techniques for implementing standard digital signal-processing algorithms on dedicated digital signal-processing chips. Includes a review of discrete-time systems, sampling and reconstruction, FIR and IIR filter design, FFT, architecture and assembly language of a basic signal processing chip, and an introduction to adaptive filtering.
Prerequisites: ESE 337, or ESE 305 and 380
3 credits
ESE 349 Introduction to Fault Diagnosis of Digital Systems
A follow-up to ESE 218 to acquaint students with fault diagnosis of logic circuits. Both combinational and sequential circuits are considered. Concepts of faults and fault models are presented followed by discussion of test generation, test selection, and fault dictionaries. Emphasis is on test generation for fault detection, fault location, fault location within a module, and fault correction. Some basic reliability-enhancing design techniques for digital circuits and systems are also discussed.
Prerequisite: ESE 218
3 credits

ESE 350 Electrical Power Systems
Fundamental engineering theory for the design and operation of an electric power system. Modern aspects of generation, transmission, and distribution are considered with appropriate inspection trips to examine examples of these facilities. The relationship between the facilities and their influence on our environment is reviewed. Topics include power system fundamentals, characteristics of transmission lines, generalized circuit constants, transformers, control of power flow and of voltage, per unit system of computation, system stability, and extra-high voltage AC and DC transmission.
Prerequisite: ESE 271
3 credits

ESE 351 Energy Conversion
Natural and secondary energy sources; methods of energy conversion including thermionic, thermoelectric, and magneto-hydrodynamic converters, fuel cells, and solar cells.
Prerequisites: ESE 271; MEC 301 or ESG 302
3 credits

ESE 352 Electromechanical Energy Converters
Basic principles of energy conversion; DC, induction, and synchronous rotary converters; the three-phase system and symmetrical components; the relationships between voltage, current, flux, and mmf.; equivalent circuits and operating characteristics of rotary converters; and analysis of saturation effects.
Prerequisite: ESE 372
3 credits

ESE 355 VLSI System Design
Introduces techniques and tools for scalable VLSI design and analysis. Emphasis is on physical design and on performance analysis. Includes extensive laboratory experiments and hands-on use of CAD tools.
Prerequisite: ESE 218
4 credits

ESE 356 Digital System Specification and Modeling
Introduces concepts of specification and modeling for design at various levels of abstraction. High Level specification language is used for executable models creation, representing possible architecture implementations. Topics include design space exploration through fast simulation and re-use of models and implementation.
Prerequisites: ESE 124 (or ESG 111 or MEC 111 or 112) and ESE 380
3 credits

ESE 357 Digital Image Processing
Covers digital fundamentals, image transforms, image enhancement, image restoration, image compression, segmentation, representation and description, recognition, and interpretation.
Prerequisites for ESE and ECE majors: ESE 305; ESE 224 or ESE 225
Prerequisites for CSE majors: CSE 214 and 220
3 credits

ESE 358 Computer Vision
Introduces fundamental concepts, algorithms, and computational techniques in visual information processing. Covers image formation, image sensing, binary image analysis, image segmentation, Fourier image analysis, edge detection, reflectance map, photometric stereo, basic photogrammetry, stereo, pattern classification, extended Gaussian images, and the study of human visual system from an information processing point of view.
Prerequisites for ESE and ECE majors: ESE 305; ESE 224 or CSE 220
3 credits

ESE 362 Optoelectronic Devices and Optical Imaging Techniques
A thorough introduction to the field of optoelectronics including a firm basis of fundamental physics, optical imaging, and optical communication systems. A detailed coverage of laser and semiconductor devices along with a study of the commonly used optical radiation detectors. The definition of optoelectronics is extended to include a discussion on the behavior of light in crystals.
Prerequisite: ESE 372
3 credits

ESE 363 Fiber Optic Communications
Design of single and multi-wavelength fiber optic communications systems. Topics include analysis of optical fibers, optical transmitters and receiver design, optical link design, single-mode and multimode fiber optics, and systems with analysis of FDDI and SONET/SDH, and wavelength division multiplexing.
Prerequisite: ESE 372
3 credits

ESE 366 Design using Programmable Mix-Signal Systems-on-Chip
This course focuses on development of mix-signal embedded applications that utilize systems on chip (SoC) technology. The course discusses design issues, such as (i) implementing functionality, (ii) realizing new interfacing capabilities, and (iii) improving performance through programming the embedded microcontroller and customizing the reconfigurable analog and digital software of SoC.
Prerequisite: ESE 218, ESE 372, and ESE 224 or CSE 230
4 credits

ESE 371 Computer Graphics
Prerequisite: ESE 344 or CSE 214
4 credits

ESE 372 Electronics
The pertinent elements of solid-state physics and circuit theory are reviewed and applied to the study of digital equipments and circuits, including junction diodes, transistors, and gate and electronic switches; large- and small-signal analysis of amplifiers; amplifier frequency response; and rectifiers and wave-shaping circuits.
Prerequisite: ESE 271
Corequisite for ESE and ECE majors: ESE 211
4 credits

ESE 373 RF Electronics for Wireless Communications
Introduces basic concepts and key circuits of radio-frequency systems. Taught within the design and construction of a transmitter for wireless communication, the course covers fundamental principles which apply to all radio devices. Essential theoretical background, with additional emphasis on practical implementation using commercially available integrated circuits for double-balanced mixers, oscillators, and audio power amplifiers. Basic components and circuits; key elements of radio electronics, including filters, matching networks, amplifiers, oscillators, mixers, modulators, detectors, and antennas. Computer simulation via Pspice and Poff is emphasized as an integral part of the design process.
Prerequisite: ESE 372
3 credits

ESE 380 Embedded Microprocessor Systems Design I
Fundamental concepts and techniques for designing electronic systems that contain a microprocessor or microcontroller as a key component. Topics include system level architecture, microprocessors, ROM, RAM, I/O subsystems, address decoding, PLDs and programmable peripheral ICs, assembly language programming and debugging. Hardware-software trade-offs in implementation of functions are considered. Hardware and software design is emphasized equally. Laboratory work involves design, implementation, and testing of microprocessor controlled circuits.
Prerequisite: ESE 218
4 credits

ESE 381 Embedded Microprocessor Systems Design II
A continuation of ESE 380. The entire system design cycle, including requirements definition and system specifications, is covered. Topics include real-time requirements, timing, interrupt driven systems, analog data conversion, multi-module and multi-language systems. The interface between high-level language and assembly language is covered. A complete system is designed and prototyped in the laboratory.
Prerequisite: ESE 271 and 380
4 credits

ESE 382 Digital Design Using VHDL and PLDs
Digital system design using the hardware description language VHDL and system implementation using complex programmable logic devices (CPLDs) and field programmable gate arrays (FPGAs). Topics include design methodology, VHDL syntax, entities, architectures, testbenches, subprograms, packages, and libraries. Architecture and characteristics of PLDs and FPGAs are studied. Laboratory work involves writing the VHDL descriptions and testbenches for designs, compiling, and functionally stimulating the designs, fitting and timing simulation of the fitted designs, and programming the designs into a CPLD or FPGA and bench testing.
Prerequisite: ESE 218
4 credits

ESE 390 Special Topics in Digital Systems
A vehicle for new course material of current interest in the area of digital systems. Semester supplements to this Bulletin contain specific description when course is offered. May be repeated for different topics but only three credits may be counted as technical electives.
Prerequisite: Permission of department
1-6 credits

www.stonybrook.edu/sgbulletin

COURSE DESCRIPTIONS

Spring 2007: updates since Fall 2006 are in red
ESE 440 Engineering Design I
Lectures by faculty and visitors on typical design problems encountered in engineering practice. During this semester each student will choose a senior design project for Engineering Design II. A preliminary design report is required. Not counted as a technical elective. Laboratory fee required.
Prerequisites: ESE or ECE major, U4 standing; two ESE technical electives (excluding ESE 390 and 499); ESE 300. Students may need additional prerequisites depending on the design project undertaken. 3 credits

ESE 441 Engineering Design II
Student groups carry out the detailed design of the senior projects chosen during the first semester. A comprehensive technical report of the project and an oral presentation are required. Not counted as a technical elective. Laboratory fee required.
Prerequisite: ESE 440 3 credits

ESE 475 Undergraduate Teaching Practicum
Students assist the faculty in teaching by conducting recitation or laboratory sections that supplement a lecture course. The student receives regularly scheduled supervision from the faculty instructor. May be used as an open elective only and repeated once.
Prerequisites: U4 standing; a minimum g.p.a. of 3.00 in all Stony Brook courses, and a grade of B or better in the course in which the student is to assist; permission of department. 3 credits

ESE 476 Instructional Laboratory Development Practicum
Students work closely with a faculty advisor and staff in developing new laboratory experiments for scheduled laboratory courses in electrical and computer engineering. A comprehensive technical report and the instructional materials developed must be submitted at the end of the course. May be used as a technical elective for electrical and computer engineering majors. May be repeated as an open elective.
Prerequisites: U4 standing; minimum cumulative g.p.a. of 3.0 and minimum grade of A in the course for which the students will develop material; permission of department and instructor. 3 credits

ESE 488 Internship in Electrical/Computer Engineering
An independent off-campus engineering project with faculty supervision. May be repeated but only three credits of internship electives may be counted toward the non-ESE technical elective requirement.
Prerequisites: ECE or ESE major; U3 or U4 standing; 3.00 g.p.a. minimum in all engineering courses; permission of department. 3 credits

ESE 499 Research in Electrical Sciences
An independent research project with faculty supervision. Permission to register requires a 3.00 g.p.a. in all engineering courses and the agreement of a faculty member to supervise the research. May be repeated but only three credits of research electives (AMS 487, BME 499, CSE 487, MEC 499, ESM 499, EST 499, ESE 487) may be counted toward non-ESE technical elective requirements.
Requirements: U4 standing, 3.00 g.p.a. minimum in all engineering courses, permission of department
0-3 credits