CHE

Chemistry

CHE 129-E General Chemistry IA
A broad introduction to the fundamental principles of chemistry, including substantial illustrative material drawn from the chemistry of inorganic, organic, and biochemical systems. Basic concepts, problem solving, and factual material are emphasized. This course provides the necessary foundation for students who wish to pursue further coursework in chemistry. CHE 129 is inappropriate for students who satisfy the prerequisites for CHE 131 or 141. Three lecture hours, one 80-minute workshop, and one problem-solving session per week. The content and grading match that of CHE 131 (see course description for CHE 131), but the math prerequisites differ, and students attend a CHE 130 problem-solving session per week. The problem-solving session provides a structured environment for developing quantitative reasoning and problem-solving skills. CHE 129 may not be taken for credit in addition to CHE 125/124, 131, or 141.
Corequisites: MAT 123 and CHE 130
4 credits

CHE 130 Problem Solving in General Chemistry
This course provides a structured environment for completing CHE 129 homework assignments and helping students develop the quantitative reasoning and problem solving skills needed in General Chemistry. Satisfactory/Unsatisfactory grading only. Grading is based on attendance and participation. Required for students taking CHE 129 along with MAT 123.
Corequisites: CHE 129 and MAT 123
S/U grading

CHE 131-E General Chemistry IB
A broad introduction to the fundamental principles of chemistry, including substantial illustrative material drawn from the chemistry of inorganic, organic, and biochemical systems. The principal topics covered are stoichiometry, the states of matter, chemical equilibriums and introductory thermodynamics, electrochemistry, chemical kinetics, electron structure and chemical bonding, and chemical periodicity. The sequence emphasizes basic concepts, problem solving, and factual material. It provides the necessary foundation for students who wish to pursue further coursework in chemistry. This sequence is inappropriate for students who have completed two or more years of chemistry in high school; such students should take CHE 141, 142. Three lecture hours and one 80-minute workshop per week. May not be taken for credit in addition to CHE 129 or 141.
Corequisites to CHE 131: MAT 125 or higher
4 credits

CHE 132-E General Chemistry II
A continuation of either CHE 129 or 131, introducing the fundamental principles of chemistry, including substantial illustrative material drawn from the chemistry of inorganic, organic, and biochemical systems. The principal topics covered are stoichiometry, the states of matter, chemical equilibriums and introductory thermodynamics, electrochemistry, chemical kinetics, electron structure and chemical bonding, and chemical periodicity. The sequence emphasizes basic concepts, problem solving, and factual material. It provides the necessary foundation for students who wish to pursue further coursework in chemistry. This sequence is inappropriate for students who have completed two or more years of chemistry in high school; such students should take CHE 141, 142. Three lecture hours and one 80-minute workshop per week. May not be taken for credit in addition to CHE 142 or 148.
Prerequisite to CHE 132: C or higher in CHE 124 or 129 or 131
Pre-or Corequisites to CHE 132: MAT 125 for students who took CHE 124 or 129 or 130; MAT 126 or higher in addition to all others
4 credits

CHE 133, 134 General Chemistry Laboratory I, II
Designed to familiarize students with (1) some chemical and physical properties of substances, (2) techniques of quantitative chemistry, and (3) scientific methodology. Four hours of laboratory and discussion per week. CHE 133 may not be taken for credit in addition to CHE 143, and CHE 134 may not be taken for credit in addition to CHE 144 or 199.
Prerequisite to CHE 133: CHE 129 or 131 or 198
Pre-or Corequisite to CHE 133: CHE 134 or 129 or 131 or 198
Prerequisite to CHE 134: CHE 133
Pre-or Corequisite to CHE 134: CHE 132 or 198
1 credit per course

CHE 141-E, 142-E Honors Chemistry I, II
The topics covered in this sequence are similar to those in CHE 133, 132, but draw more on students' previous background in science and mathematics to present the material in a more quantitative manner. Recommended for students with strong backgrounds in mathematics and science, especially chemistry and physics. Three lecture hours and one 80-minute workshop per week. CHE 141 may not be taken for credit in addition to CHE 131, and CHE 142 may not be taken for credit in addition to CHE 132 or 198. Priority given to students in the University's honors programs.
Prerequisite to CHE 141: High school chemistry; level 5 on the mathematics placement examination or registration in MAT 125 or higher calculus course or AMS 151
Prerequisite to CHE 142: C or higher in CHE 141
Pre-or Corequisite to CHE 142: MAT 126 or higher or AMS 161
4 credits per course

CHE 143, 144 Honors Chemistry Laboratory I, II
Laboratory program similar in content to CHE 133, 134 but conducted at a more intensive and stimulating level. Four hours of laboratory and discussion per week. CHE 143 may not be taken for credit in addition to CHE 133, and CHE 144 may not be taken for credit in addition to CHE 134 or 199. Priority given to students in the University's honors programs.
Corequisite to CHE 143: CHE 141
Prerequisite to CHE 144: CHE 145
Corequisite to CHE 144: CHE 142
1 credit per course

CHE 198-E Chemistry for Engineers
A quantitative introduction to chemistry (stoichiometry, bonding, states of matter, equilibrium) with emphasis on topics of interest to students in engineering (metals and semiconductors, thermochromy; electrochemistry and corrosion; polymers). May not be taken for credit in addition to CHE 132 or 142.
Prerequisite: high school chemistry
Pre-or Corequisites: PHY 123/124 or 142 or 127 or 132 or 142 or AMS 161
Corequisite: CHE 199
3 credits

CHE 199 General Chemistry Laboratory for Engineers
A laboratory course to accompany CHE 198, including an introduction to analytical techniques, electrochemistry, and chemical synthesis. Both quantitative and qualitative methods are emphasized. May not be taken for credit in addition to CHE 134 or 144.
Corequisite: CHE 198
1 credit

CHE 221 Introduction to Chemistry of Solids
Introduction to the synthesis, structure, properties, and applications of solid materials. Topics include preparation and characterization of solids (introduction to X-ray diffraction), thermal decomposition, crystal structure, crystal defects, and solid-state properties that influence chemical reactivity. This course is offered as both CHE 221 and ESM 221.
Prerequisites: CHE 132 or 142 or 198, and CHE 133 or 143 or 199; ESG 111 or CSE 114 or EEC 111 or ECE 112; MAT 125 or 127 or 142 or 171 or AMS 161; PHY 126 or 131/133 or 141
3 credits

CHE 301 Physical Chemistry I
The quantitative study of microscopic and macroscopic chemical systems, covering introductory quantum theory of atoms and molecules (energy levels and states), statistical thermodynamics, and fundamental thermodynamics with application to chemical reactions and simple systems.
Prerequisites: CHE 132 or 142 or 198; MAT 132 or 142 or 127 or 171 or AMS 163
Pre-or Corequisite: PHY 121/123 or 125 or 131/131 or 141
4 credits

CHE 302 Physical Chemistry II
Applications of thermodynamics to chemical equilibria; electrochemistry; and ideal solutions. Applications of quantum theory to chemical bonding, molecular structure, and spectroscopy.
Prerequisites: CHE 301; MAT 211 or 203 or 205 or AMS 161
Pre-or Corequisite: PHY 122/124 or 132/134 or 142 or PHY 126/127
4 credits

CHE 303 Solution Chemistry Laboratory
Prerequisite: CHE 134 or 144 or 199
Corequisite: CHE 301
2 credits
CHE 304 Chemical Instrumentation Laboratory
Prerequisite: CHE 303.
Corequisite: CHE 302 and 385
Advisory Prerequisite: Knowledge of computer programming
3 credits

CHE 310-H Chemistry in Technology and the Environment
Use of chemical principles in understanding processes that occur in the modern technological world and in the natural environment. Certain ecological problems of a chemical nature are analyzed. Methods of controlling these problems are discussed.
Prerequisite: CHE 132 or 142 or 198
3 credits

CHE 312 Physical Chemistry (Short Course)
A one-semester treatment of fundamental concepts of physical chemistry, intended primarily for students of the biological sciences desiring an introduction to physical chemistry. Topics include equations of state; classical thermodynamics and its application to chemical equilibrium in reaction systems, multiphase systems, and electrochemical cells; kinetic theory of gases; transport properties; chemical kinetics. May not be taken for credit by students who have completed CHE 301. Not for major credit.
Prerequisites: CHE 132 or 142 or 198; MAT 132 or 142 or 127 or 171 or AMS 161
Pre- or Corequisite: PHY 121/123 or 125 or 131/133 or 141
3 credits

CHE 321 Organic Chemistry I
An introduction to the structure, reactivity, and properties of organic compounds. A detailed study of the structures of the compounds. Not for major credit.
Prerequisite: C or higher in CHE 132 or 142
3 credits

CHE 322 Organic Chemistry II A
Discussion of the structure, reactivity, and properties of organic compounds introduced in CHE 321. Not for major credit.
Prerequisite: C or higher in CHE 321
3 credits

CHE 326 Organic Chemistry IIB
Similar to CHE 322 but providing a more fundamental view of organic compounds, reaction mechanisms, and synthesis, based somewhat more explicitly on thermodynamics and kinetics. Especially for those who may major in chemistry, biochemistry, or another physical science. CHE 326 may not be taken for credit in addition to CHE 322.
Prerequisite: C or higher in CHE 321
3 credits

CHE 327 Organic Chemistry Laboratory
Techniques of isolating and handling organic substances, including biological materials. A one-semester course that provides a basic organic laboratory experience. It is recommended that students take CHE 327 at the same time as or immediately following CHE 322 or 332. Four laboratory hours and one lecture hour per week. Not for credit in addition to CHE 383.
Prerequisites: CHE 133 or 143, CHE 134 or 144
Pre- or Corequisite: CHE 332 (or the former CHE 331)
2 credits

CHE 341 Organic Chemistry Honors Seminar I
Advanced topics in organic chemistry within the scope but beyond the reach of CHE 321 (Organic Chemistry D) will be discussed along with an introduction to contemporary research topics. Permission to enroll will be granted to students who have demonstrated excellence in their General Chemistry courses.
Prerequisites: CHE 132 or 142; permission of instructor
Corequisite: CHE 321
1 credit

CHE 342 Organic Chemistry Honors Seminar II
Advanced topics in organic chemistry within the scope but beyond the reach of CHE 321 (Organic Chemistry D) will be discussed along with topics in contemporary research. Permission to enroll will be granted to students who have demonstrated excellence in CHE 321.
Prerequisites: CHE 321; permission of instructor
Corequisite: CHE 321
1 credit

CHE 344 Spectroscopy of Organic Compounds
Modern spectroscopic methods applied to organic compounds. Structural effects on spectroscopic properties are surveyed with dual emphasis on fundamental aspects and problem solving. The student learns how spectroscopic methods are used both to solve complex structural problems and to investigate bonding features in organic molecules.
Prerequisite: CHE 325 or 326 (or the former CHE 332)
3 credits

CHE 345 Structure and Reactivity in Organic Chemistry
Electronic and stereochemical theories relating to organic structure and reactions. Topics such as bonding, strain, aromaticity, MO theory, molecular rearrangements, pericyclic reactions, and photochemistry are covered.
Prerequisite: CHE 322 or 326 (or the former CHE 332)
Pre- or Corequisite: CHE 301 or 312
2 credits

CHE 346 Biomolecular Structure and Reactivity
The reactivity and physiological function of biological macromolecules and their monomeric constituents are described at the chemical level. The course reflects the most recent advances at the interface of organic chemistry and biochemistry. Specific topics include catalysis, biomimicry; protein and DNA modifications, binding and target recognition, and correlations between three-dimensional structure and reactivity.
Pre- or Corequisites: CHE 322 or 326 (or the former CHE 332); CHE 301 or 312
3 credits

CHE 351 Quantum Chemistry
Concepts of quantum theory, Schrödinger wave mechanics, and related mathematical techniques illustrated by application to systems of chemical bonding, spectroscopy, molecular structure, and molecular collision phenomena.
Prerequisites: CHE 302; MAT 203 or 205
3 credits

CHE 353 Chemical Thermodynamics
A rigorous development of thermodynamics and its application to systems of interest to chemists, including electrochemical cells, gases, polymers, and homogeneous and heterogeneous equilibrium. An introduction to statistical mechanics is included.
Prerequisites: CHE 302; CHE 321 (or the former CHE 331)
3 credits

CHE 357 Molecular Structure and Spectroscopy Laboratory
Optical and magnetic resonance spectroscopy are used to investigate the structural, dynamic, and quantum mechanical properties of some basic chemical systems. Emphasis is on the quantitative measurement of molecular parameters and transformations.
Prerequisites: CHE 304 and 383
2 credits

CHE 361 Nuclear Chemistry
Properties of radioactive substances and their use in the study of chemical problems, nuclear stability and structure, nuclear reactions, radioactive decay, interactions of radiation with matter, nuclear medicine, isotope applications, and environmental control. Offered in summer only.
Prerequisites: Four semesters of chemistry; PHY 126 and 127, or 132/134 or 142; AMS 161 or MAT 127 or 132 or 142 or 171; permission of department through application by January 30; permission of instructor
Corequisite: CHE 362
3 credits

CHE 362 Nuclear Chemistry Laboratory
Detection and measurement of radiation, electronic instrumentation, radiation safety, and application of radioactivity to chemical problems. Offered in summer only.
Corequisite: CHE 361
3 credits

CHE 375 Inorganic Chemistry I
A survey of inorganic chemistry covering various classes of inorganic compounds and reactions with emphasis on the structural aspects. Wherever possible, the subject is treated on the basis of modern concepts of chemical bonding. Thermodynamic and kinetic aspects of inorganic reactions are included.
Prerequisites: CHE 302; CHE 321 (or the former CHE 331)
3 credits

CHE 376 Inorganic Chemistry II
The chemistry of the elements with an emphasis on the transition metals. Reaction mechanisms, synthesis, and structure are covered. Specific areas of concern include coordination chemistry, organometallic chemistry, bioinorganic chemistry, and selected topics from solid-state and non-transition metal chemistry.
Prerequisite: CHE 375
3 credits
CHE 383 Introductory Synthetic and Spectroscopic Laboratory Techniques
Fundamental laboratory techniques including methods of separation, purification, synthesis, and analysis. Emphasis is on organic with an introduction to inorganic problems. For students who require substantial laboratory skills, such as those planning careers in research. Not for credit in addition to CHE 327.
Prerequisite: CHE 134 or 144
Corequisite: CHE 321 (or the former CHE 331)
2 credits

CHE 384 Intermediate Synthetic and Spectroscopic Laboratory Techniques
Application of fundamental laboratory techniques to organic and inorganic problems including multistep syntheses and structural and mechanistic determinations. Lectures cover material pertaining to the experimental work, with an emphasis on spectroscopy.
Prerequisite: CHE 383
Corequisites: CHE 322 or 326 (or the former CHE 332); CHE 385
3 credits

CHE 385 Tools of Chemistry
A seminar course covering topics common to all areas of chemistry: scientific ethics, chemical literature and information retrieval, scientific writing, and oral presentation. Should be taken concurrently with the student’s second 300 level chemistry laboratory course. Satisfactory completion of the course fulfills the Chemistry department’s upper division writing requirement. A through C/U Unsatisfactory grading only.
Corequisite: CHE 304 or 384
1 credit, ABC/U grading

CHE 461 Selected Topics in Chemistry
Semester supplements to this Bulletin contain specific description when course is offered. May be repeated for credit as the topic changes.
Prerequisite: Varying with topic
1-3 credits

CHE 475, 476 Undergraduate Teaching Practica I, II
Work with a faculty member as an assistant in one of the faculty member’s regularly scheduled classes. The student is required to attend all the classes, do all the regularly assigned work, and meet with the faculty member at regularly scheduled times to discuss the intellectual and pedagogical matters relating to the course. In CHE 476, students assume greater responsibility in such areas as leading discussions and analyzing results of tests that have already been graded. Students may participate only in courses in which they have excelled.
Prerequisite to CHE 475: Permission of department
Prerequisites to CHE 476: CHE 475; permission of department
3 credits per course, SU grading

CHE 477 Undergraduate Teaching Practicum III
Work with a faculty member as an assistant in one of the faculty member’s regularly scheduled classes. Students may participate only in courses in which they have excelled. May be repeated.
Prerequisites: CHE 476; permission of instructor and department
0 credits, SU grading

CHE 482 Senior Laboratory Projects in Chemistry
Laboratory projects, some to be chosen by the student, primarily in the areas of organic, inorganic, and biological chemistry. There are opportunities to learn specialized skills useful for professional employment in quality control, research, or development.
Prerequisites: CHE 375, 384, and 385
2 credits

CHE 487 Research in Chemistry
Students pursue research or tutorial study in specialized areas of chemistry. May be repeated.
Prerequisite: Permission of instructor and department
0-6 credits

CHE 488 Internship
Research participation in off-campus laboratories. Students are required to submit to the department a proposal at the time of registration and a research report at the end of the semester. May be repeated up to a limit of 12 credits.
Prerequisites: CHE 384; permission of instructor and department
0-6 credits, SU grading

CHE 490 Current Trends in Biological Chemistry
A discussion of current topics of research and methodology in modern biological chemistry. The course includes directed readings, attendance, and discussion at seminars presented by speakers from various academic and industrial institutions. May be repeated.
Prerequisite: CHE 322 or 326 (or the former CHE 332)
Pre- or Corequisite: CHE 301 or 312
1 credit

CHE 495-496 Senior Research
A two-semester research program to be carried out under the supervision of a staff member. The results of this work are to be submitted to the department in the form of a senior research report. The student is given an oral examination in May by a faculty committee consisting of the student’s supervisor and three other faculty members. Students receive only one grade upon completion of the sequence.
Prerequisites: U4 standing; permission of instructor and department
3 credits per course