CHE

Chemistry

CHE 123-E, 124-E Introductory Chemistry I, II

CHE 123 develops skills in information processing, critical thinking, and problem solving. Content is taken from the second half of CHE 131, including introduction to organic and biological molecules and reactions. Courses may not be taken for credit in addition to CHE 131 or 141.

Prerequisite to CHE 123: Level 2 on the mathematics placement examination and high school chemistry or Level 3 on the mathematics placement examination Corequisite to CHE 123: MAP 103 or appropriate MAT course.

Advisory Corequisite to CHE 123: CHE 133

Prerequisites to CHE 124: C or higher in CHE 123; MAP 103

Corerequisite to CHE 124: MAT 123

Advisory Corequisite to CHE 124: CHE 134

3 credits per course

CHE 130 Problem Solving in General Chemistry

This course provides a structured environment for completing CHE 131 homework assignments and helping students develop the quantitative reasoning and problem solving skills needed in General Chemistry. Satisfactory/Unsatisfactory grading only. Grading is based on attendance and participation. Required for students taking CHE 131 along with MAT 125. Corequisites: CHE 131 and MAT 125 S/U grading

CHE 131-E, 132-E General Chemistry I, II

A broad introduction to the fundamental principles of chemistry, including substantial illustrative material drawn from the chemistry of inorganic, organic, and biochemical systems. The principal topics covered are stoichiometry, the states of matter, chemical equilibria and introductory thermodynamics, electrochemistry, chemical kinetics, electron structure and chemical bonding, and chemical periodicity. The sequence emphasizes basic concepts, problem-solving, and factual material. It provides the necessary foundation for students who wish to pursue further coursework in chemistry. This sequence is inappropriate for students who have completed two or more years of chemistry in high school; such students should take CHE 141, 142. Three lecture hours and one 80-minute workshop per week. CHE 131 may not be taken for credit in addition to CHE 141, and CHE 132 may not be taken for credit in addition to CHE 142 or 198. Corequisites to CHE 131: MAT 125 and CHE 130 or pre- or corequisite of MAT 125 or higher

Prerequisite to CHE 132: C or higher in CHE 124 or 131

Pre- or corequisite to CHE 132: MAT 125 for students who took CHE 130; MAT 126 or higher for all others

4 credits per course

CHE 198-E Chemistry for Engineers

A quantitative introduction to chemistry (stoichiometry, bonding, states of matter, equilibrium) with emphasis on topics of interest to students in engineering (metals and semiconductors; thermochrometry; electrochemistry; corrosion; polymers). May not be taken for credit in addition to CHE 132 or 142.

Prerequisite: high school chemistry

Pre- or Corequisites: PHY 132/134 or 142 or 126 or 127; MAT 127 or 132 or 142 or AMS 161

Corequisites: CHE 199

4 credits per course

CHE 199 General Chemistry Laboratory for Engineers

A laboratory course to accompany CHE 198, including an introduction to analytical techniques, electrochemistry, and chemical synthesis. Both quantitative and qualitative methods are emphasized. May not be taken for credit in addition to CHE 134 or 144.

Corequisite: CHE 198

1 credit

CHE 221 Introduction to Chemistry of Solids

Introduction to the synthesis, structure, properties, and applications of solid materials. Topics include preparation and characterization of solids (introduction to X-ray diffraction), thermal decomposition, crystal structure, crystal defects, and solid-state properties that influence chemical reactivity. This course is offered as both CHE 221 and ESM 221.

Prerequisites: CHE 132 or 142 or 198, and CHE 133 or 145 or 149; ENG 111 or CHE 114 or MEC 111 or MEC 112; MAT 132 or 127 or 142 or AMS 161; PHY 126 or 131/133 or 141

3 credits

CHE 301 Physical Chemistry I

The quantitative study of microscopic and macroscopic chemical systems, covering introductory quantum theory of atoms and molecules (energy levels and states), statistical thermodynamics, and fundamental thermodynamics with application to chemical reactions and simple systems.

Prerequisites: CHE 132 or 142 or 198; MAT 132 or 142 or 127 or AMS 161

Pre- or Corequisite: PHY 121/123 or 125 or 131/133 or 141

4 credits

CHE 302 Physical Chemistry II

Applications of thermodynamics to chemical equilibria, electrochemistry, and ideal solutions. Applications of quantum theory to chemical bonding, molecular structure, and spectroscopy.

Prerequisites: CHE 301; MAT 211 or 203 or 205 or AMS 161

Pre- or Corequisite: PHY 122/124 or 132/134 or 142 or PHY 126/127

1 credit

CHE 303 Solution Chemistry Laboratory


Prerequisite: CHE 134 or 199

Corequisite: CHE 301

2 credits

CHE 304 Chemical Instrumentation Laboratory


Prerequisite: CHE 303.

Corequisites: CHE 302 and 385

Advisory Prerequisite: Knowledge of computer programming

2 credits

CHE 310-H Chemistry in Technology and the Environment

Use of chemical principles in understanding processes that occur in the modern technological world and in the natural environment. Certain ecological problems of a chemical nature are analyzed. Methods of controlling these problems are discussed.

Prerequisite: CHE 132 or 142 or 198

3 credits

CHE 312 Physical Chemistry (Short Course)

A one-semester treatment of fundamental concepts of physical chemistry, intended primarily for students of the biological sciences desiring an introduction to physical chemistry. Topics include equations of state; classical thermodynamics and its application to chemical equilibrium in reaction systems, multiphase systems, and electrochemical cells; kinetic theory of gases; transport properties; chemical kinetics. May not be taken for credit by students who have completed CHE 301. Not for major credit.

Prerequisites: CHE 132 or 142 or 198; MAT 132 or 142 or 127 or AMS 161

Pre- or Corequisite: PHY 121/123 or 125 or 131/133 or 141

4 credits
CHE 321 Organic Chemistry I
An introduction to the structure, reactivity, and properties of organic compounds is presented using modern views of chemical bonding. These fundamental ideas are applied to topics ranging from synthetic chemistry to complex functional structures such as lipid bilayers.
Prerequisite: C or higher in CHE 132 or 142
3 credits

CHE 322 Organic Chemistry IIA
Discussion of the structure, reactivity, and properties of organic compounds introduced in CHE 321 is continued. The chemistry of substances important in biology, medicine, and technology is emphasized. CHE 322 may not be taken for credit in addition to CHE 326.
Prerequisite: C or higher in CHE 321
3 credits

CHE 326 Organic Chemistry IIB
Similar to CHE 322 but providing a more fundamental view of organic compounds, reaction mechanisms, and synthesis, based somewhat more explicitly on thermodynamics and kinetics. Especially for those who may major in chemistry, biochemistry, or another physical science. CHE 326 may not be taken for credit in addition to CHE 322.
Prerequisite: C or higher in CHE 321
3 credits

CHE 327 Organic Chemistry Laboratory
[Effective Fall 2005]
Techniques of isolating and handling organic substances, including biological materials. A one-semester course that provides a basic organic laboratory experience. It is recommended that students take CHE 327 at the same time as or immediately following CHE 322 or 332. Four laboratory hours and one lecture hour per week. Not for credit in addition to CHE 362.
Prerequisite: CHE 133 or 143; CHE 134 or 144
Pre-or Corequisite: CHE 321 (or the former CHE 331)
2 credits

CHE 341 Organic Chemistry Honors Seminar I
Advanced topics in organic chemistry within the scope but beyond the reach of CHE 321 (Organic Chemistry I) will be discussed along with an introduction to contemporary research topics. Permission to enroll will be granted to students who have demonstrated excellence in their General Chemistry courses.
Prerequisites: CHE 132 or 142; permission of instructor
Corequisite: CHE 321
1 credit

CHE 342 Organic Chemistry Honors Seminar II
Advanced topics in organic chemistry within the scope but beyond the reach of CHE 322 (Organic Chemistry II) will be discussed along with topics in contemporary research. Permission to enroll will be granted to students who have demonstrated excellence in the course.
Prerequisites: CHE 321; permission of instructor
Corequisite: CHE 322
1 credit

CHE 344 Spectroscopy of Organic Compounds
Modern spectroscopic methods applied to organic compounds. Structural effects on spectroscopic properties are surveyed with dual emphasis on fundamental aspects and problem solving. The student learns how spectroscopic methods are used both to solve complex structural problems and to investigate bonding features in organic molecules.
Prerequisite: CHE 322 or 326 (or the former CHE 332)
3 credits

CHE 345 Structure and Reactivity in Organic Chemistry
Electronic and stereochemical theories relating to organic structure and reactions. Topics such as bonding, strain, aromaticity, MO theory, molecular rearrangements, pericyclic reactions, and photochemistry are covered.
Prerequisite: CHE 322 or 326 (or the former CHE 332)
Pre-or Corequisite: CHE 301 or 312
3 credits

CHE 346 Biomolecular Structure and Reactivity
The reactivity and physiological function of biological macromolecules and their monomeric constituents are described at the chemical level. The course reflects the most recent advances at the interface of organic chemistry and biochemistry. Specific topics include catalysis, biominicry, protein and DNA modification, binding and target recognition, and correlation between three-dimensional structure and reactivity.
Pre-or Corequisites: CHE 322 or 326 (or the former CHE 332); CHE 301 or 312
3 credits

CHE 351 Quantum Chemistry
Concepts of quantum theory, Schrödinger wave mechanics, and related mathematical techniques illustrated by application to systems of chemical bonding, spectroscopy, molecular structure, and molecular collision phenomena.
Prerequisites: CHE 302; MAT 205 or 205
3 credits

CHE 353 Chemical Thermodynamics
A rigorous development of thermodynamics and its application to systems of interest to chemists, including electrochemical cells, gases, polymers, and homogeneous and heterogeneous equilibria. An introduction to statistical mechanics is included.
Prerequisites: CHE 302; CHE 321 (or the former CHE 331)
3 credits

CHE 357 Molecular Structure and Spectroscopy Laboratory
Optical and magnetic resonance spectroscopy are used to investigate the structural, dynamic, and quantum mechanical properties of some systems. Emphasis is on the quantitative measurement of molecular parameters and transformations.
Prerequisites: CHE 304 and 383
2 credits

CHE 361 Nuclear Chemistry
Properties of radioactive substances and their use in the study of chemical problems, nuclear stability and structure, nuclear reactions, radioactive decay, interactions of radiation with matter, nuclear medicine, isotope applications, and environmental control. Offered in summer only.
Prerequisites: Four semesters of chemistry; PHY 126 and 127, or 132/134 or 142; AMS 161 or MAT 127 or 132 or 142; permission of department through application by January 30; permission of instructor
Corequisite: CHE 362
3 credits

CHE 362 Nuclear Chemistry Laboratory
Detection and measurement of radiation, electronic instrumentation, radiation safety, and application of radioactivity to chemical problems. Offered in summer only.
Corequisite: CHE 361
3 credits

CHE 375 Inorganic Chemistry I
A survey of inorganic chemistry covering various classes of inorganic compounds and reactions with emphasis on the structural aspects. Wherever possible, the subject is treated on the basis of modern concepts of chemical bonding. Thermodynamic and kinetic aspects of inorganic reactions are included.
Prerequisites: CHE 302; CHE 321 (or the former CHE 331)
3 credits

CHE 376 Inorganic Chemistry II
The chemistry of the elements with an emphasis on the transition metals. Reaction mechanisms, synthesis, and structure are covered. Specific areas of concern include coordination chemistry, organometallic chemistry, bioinorganic chemistry, and selected topics from solid-state and non-transition metal chemistry.
Prerequisite: CHE 375
3 credits

CHE 383 Introductory Synthetic and Spectroscopic Laboratory Techniques
Fundamental laboratory techniques including methods of separation, purification, synthesis, and analysis. Emphasis is on organic with an introduction to inorganic problems. For students who require substantial laboratory skills, such as those planning careers in research. Not for credit in addition to CHE 372.
Prerequisite: CHE 134 or 144
Corequisite: CHE 321 (or the former CHE 331)
2 credits

CHE 384 Intermediate Synthetic and Spectroscopic Laboratory Techniques
Application of fundamental laboratory techniques to organic and inorganic problems including multistep syntheses and structural and mechanistic determinations. Lectures cover material pertaining to the experimental work, with an emphasis on spectroscopy.
Prerequisite: CHE 383
Corequisite: CHE 322 or 326 (or the former CHE 332); CHE 385
3 credits

CHE 385 Tools of Chemistry
A seminar course covering topics common to all areas of chemistry: scientific ethics, chemical literature and information retrieval, scientific writing, and oral presentation. Should be taken concurrently with the student’s second 300-level chemistry laboratory course. Satisfactory completion of the course fulfills the Chemistry department’s upper division writing requirement. A through C/Unsatisfactory grading only.
Corequisite: CHE 304 or 384
1 credit, ABC/U grading

CHE 461 Selected Topics in Chemistry
Semester supplements to this Bulletin contain specific description when course is offered. May be repeated for credit as the topic changes.
Prerequisite: Varying with topic
1-3 credits

CHE 475, 476 Undergraduate Teaching Practica I, II
Work with a faculty member as an assistant in one of the faculty member’s regularly scheduled classes. The student is required to attend all the classes, do all the regularly assigned work, and meet with the faculty member at regularly scheduled times to discuss the intellectual and pedagogical matters relating to the course. In CHE 475, students assume greater responsibility in such areas as leading discussions and analyzing results of tests that have already been graded. Students may participate only in courses in which they have exceeded.
Prerequisite to CHE 475: Permission of department
Prerequisites to CHE 476: CHE 475; permission of department
2 credits per course; S/U grading

Accurate as of Fall 2005
CHE 482 Senior Laboratory Projects in Chemistry
Laboratory projects, some to be chosen by the student, primarily in the areas of organic, inorganic, and biological chemistry. There are opportunities to learn specialized skills useful for professional employment in quality control, research, or development.
Prerequisites: CHE 375, 384, and 385
2 credits

CHE 487 Research in Chemistry
Students pursue research or tutorial study in specialized areas of chemistry. May be repeated.
Prerequisites: Permission of instructor and department
0-6 credits

CHE 488 Internship
Research participation in off-campus laboratories. Students are required to submit to the department a proposal at the time of registration and a research report at the end of the semester. May be repeated up to a limit of 12 credits.
Prerequisites: CHE 384; permission of instructor and department
0-6 credits, S/U grading

CHE 490 Current Trends in Biological Chemistry
A discussion of current topics of research and methodology in modern biological chemistry. The course includes directed readings, attendance, and discussion at seminars presented by speakers from various academic and industrial institutions. May be repeated.
Prerequisite: CHE 322 or 326 (or the former CHE 332)
Pre- or Corequisite: CHE 301 or 312
1 credit

CHE 495-496 Senior Research
A two-semester research program to be carried out under the supervision of a staff member. The results of this work are to be submitted to the department in the form of a senior research report. The student is given an oral examination in May by a faculty committee consisting of the student’s supervisor and three other faculty members. Students receive only one grade upon completion of the sequence.
Prerequisites: U4 standing; permission of instructor and department
3 credits per course