Graduate Bulletin

Spring 2018

Requirements for the M.S. Degree in Biomedical Engineering

A minimum of 31 graduate credits is required to earn the Master of Science in BME (non-thesis option) or 37 credits for the M.S. degree (thesis option). The program study can be chosen from any of the following approved tracks/specializations: General, Biomechanics, Biosignals, Medical Physics, or Molecular Bioengineering . The General program of study can be custom tailored in consultation with your faculty advisor/mentor to accommodate almost any BME area of interest. The following courses must be taken by all first-year graduate students: BME 501 Engineering Principles in Cell Biology, BME 502 Advanced Numerical and Computation Analysis Applied to Biological Systems, BME 505 Principles and Practice of BME, BME 520 Lab Rotation I, and BME 521 Lab Rotation II. All students (except those pursuing the Medical Physics Track) must also fulfill a business/management course requirement, which can be met by taking BME 509 Fundamentals of the Bioscience Industry or any MBA class (MBA 501, MBA 502, MBA 503, MBA 504, MBA 505, MBA 506, MBA 507, MBA 511, or MBA 589) from the School of Business. A given track/specialization will have additional requirements, which includes a minimum of six technical elective courses (4 of which have to be BME).

Thesis or Non-Thesis Options. The student has the option of earning the Master of Science Degree in BME on either a thesis or non-thesis track. If non-thesis, the student undertakes elective graduate coursework to complete the 31 credits. In the thesis option, the student must additionally complete six credits of BME 599 Thesis Research, and submit and defend a written thesis. A grade point average of B or better must be attained for the core BME courses taken, and an overall grade point average of 3.0 out of 4.0 must be maintained overall. For the non-thesis option, most students can complete this program within three academic semesters, and most students complete the thesis option in four academic semesters. The non-thesis option is recommended for students who wish to pursue a career in industry that does not involve Research & Development (R&D). Students pursing the non-thesis option cannot use BME 599 to fulfill any requirements (i.e., it is not a technical elective nor core course). The thesis option is recommended for students who will be continuing on for their doctoral degree and for students who wish to pursue an industrial career with an R&D focus.


Requirements for the Ph.D. Degree in Biomedical Engineering

A. Completion of the M.S. degree in Biomedical Engineering or equivalent graduate program

B. Satisfactory completion of the BME qualifying exam

C. Plan of Study

Student matriculating in to the doctoral (Ph.D.) degree program must complete all the requirements for the M.S. degree in BME at Stony Brook or enter the program with a relevant M.S. degree. This latter option is termed admission with “Advanced Standing”. After completion of the M.S. degree or admission with Advanced Standing, there are no course requirements per se, though certain courses may be required to fill any gaps in the student's knowledge. Following completion of a qualifying exam, an independent basic research program will be undertaken. Subsequently, the student will present and defend their dissertation proposal. Successful completion of this stage will enable the student to “Advanced to Candidacy”. One semester of teaching practicum must be satisfactorily performed. Completion of the research program will culminate in the submission and oral defense of a doctoral dissertation. The University requires at least two consecutive semesters of full-time graduate study.

D. Teaching Requirements

The BME teaching requirement for the Ph.D. degree can be fulfilled in any of the following three manners:

  1. Deliver 4 lectures in a BME undergraduate or graduate course, and present a seminar that covers the state-of-the-art in your field of research.
  2. Teach a BME course, either as the instructor of record (if you have G5 student status) or as the principal instructor (for G4 student status).
  3. Petition for something else that is equivalent to the above.

E. Thesis Proposal Examination

After successful completion of the qualifying examination, the student selects a thesis advisor and writes a proposal for thesis research. After approval by the thesis advisor, the proposal is orally defended before a thesis committee.

F. Advancement to Candidacy

After successful completion of all required and elective courses, the qualifying examination, and the thesis proposal examination, the student will be recommended to the Graduate School for advancement to candidacy.

G. Dissertation

The research for the Ph.D. dissertation is conducted under the supervision of the thesis committee. The dissertation must represent a significant contribution to the scientific and/or engineering literature. Upon approval of the completed dissertation by the thesis committee, a formal public oral defense of the dissertation is scheduled at which the student presents their findings and is questioned by members of the examining committee and by other members of the audience. On acceptance of the dissertation by the thesis committee, all requirements for the degree will have been satisfied.

H. Time Limit/Residency Requirements

All requirements for the Ph.D. degree must be completed within seven years after completing 24 credits of graduate study. The University requires at least two consecutive semesters of full-time graduate study.