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Time-resolved subnatural-width spectroscopy
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Spectra that are narrower than the natural width of decaying states can be achieved by beginning the observation
of signals at a fixed delay time after excitation rather than immediately afterward. These signals are weaker (and
noisier) than the full, time-unresolved signals. Applications of this line-narrowing technique to precision spectros-
copy are discussed, and the properties of the resulting signals are studied. Numerical simulations demonstrate
that time-resolved line narrowing is highly desirable in a large number of cases.

In this Letter, certain general characteristics of spec-
troscopic signals narrowed to less than their natural
widths are examined and discussed. The line-nar-
rowing methods considered apply to optical (1015 Hz),
microwave (1010 Hz), and nuclear (1020 Hz) spectros-
copy. The most important characteristics common to
these spectroscopies are the selection rules and the
linewidths: the selection rules determine which levels
may be connected by transitions, and linewidths dictate
the ultimate precision of spectroscopic measurements.
Sometimes the linewidths are determined by experi-
mental conditions (Doppler, collision, apparatus size,
recoil, local fields), and sometimes these effects can be
reduced so that only the power broadening of the field
inducing the transition determines the linewidths.
Ultimately the width of every spectral line is limited by
the finite time the system spends in one of the states of
the transition: most commonly this time is the natural
lifetime of an excited state, which therefore determines
a natural width.'

Most precision spectroscopy is concerned with find-
ing the center of a decay-broadened signal or the fre-
quency of a decaying oscillation. Since these two types
of signal are a Fourier-transform pair, measuring one
yields results equivalent to measuring the other.
Narrower signals (or longer decay times) can produce
more-precise measurements.

In 1960, Hughes2 suggested that the separated-os-
cillatory-fields method of Ramsey3 could be applied to
signals broadened by natural decay as well as to those
broadened by apparatus limits. The basis of the
method is the selection of those atoms (molecules,
nuclei, etc.) that fail to decay in a few natural lifetimes,
i.e., they survive in the transient state for a longer time.
The time-evolving phase of the wave function (iEt/h)
is thus preserved because the atom remains in the state
of energy E. This experimental technique produces
narrower but significantly weaker signals.

Since 1960, there have been many experimental
variations of this idea proposed and exploited,4' 3 all
of which require discarding that part of the signal ar-

riving shortly after the excitation of the state to be
studied and measuring only the delayed and exponen-
tially weakened signal. Experimental procedures must
therefore be amenable to temporal resolution. The
energy range spanned by these studies begins at the
Lamb shift6 at 109 Hz and reaches to Mbssbauer inter-
vals8 at 1018 Hz. Significant linewidth reductions have
resulted in substantial improvements in precision.

In this Letter, the basic features governing all such
techniques are examined in both the absence and
presence of noise, and conclusions about utility of
time-resolved spectroscopy are presented. In general,
there is nothing to be gained by discarding data as long
as the information is understood. But spectroscopists
never have complete information about their signal
shapes, and therefore selective (unbiased) deletion of
data can be of great help14 and may even be neces-
sary.

Consider a decaying oscillation (which may or may
not be superposed on an exponential background) as
shown in Fig. 1. The oscillation frequency w0 of the
signal S(t) = [1 + a cos(cot + k)]e-rt is not perfectly
measurable because an experimenter has a limited time
to make a measurement. This is reflected in the width
r of the Lorentzian-Fourier transform (in the co region)
L(x) = 1/(1 + x2), where x = (co-co)/r. The precision
of measurement of co is limited by both r and the ex-
perimental noise: the experimental uncertainty can be
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Fig. 1. An exponentially decaying oscillation and its Fourier
transform. Note that beginning the transform at time T in-
stead of at zero results in a narrower and weaker shape with
oscillations (caused by the aperture).
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much smaller than r if the signal-to-noise ratio (S/N)
is much larger than unity. On the other hand, r is the
determining measure of the ultimate precision attain-
able. A smaller value of P (narrower Fourier transform)
would result in a better measurement.

Suppose that all the data before time to - TIr were
ignored. The integral for the Fourier transform of S(t)
then would begin at to instead of at zero, and the result
would be (for t = 0)

F(x) = L(x) e-T[cos(xT) - x sin(xT)], (la)
G0() = L(x) e-T[sin(xT) + x cos(xT)] (lb)

for the real and imaginary parts. For T of order unity,
the real part F has a maximum at x = 0(w = co), a width
of order r, and a height of order e7T. For x <<1, T is
Lorentzian, but at larger x it oscillates (see Fig. 1). As
x increases from zero, F(x) drops faster than the time-
unresolved L(x) because of the bracketed term, re-
sulting in a narrower spectrum. Properties of the
narrower and weaker time-resolved signals are shown
in Fig. 2. Data characterized by this line shape can be
computer fitted with high precision, in spite of the re-
duced amplitude and S/N, because the extra oscillations
in the wings provide more information about the loca-
tion of the central maximum than do the decaying tails
of a Lorentzian transform. Furthermore, the effect of
noise-hidden asymmetries that may shift the signal
center is reduced because of the decreased width of the
central maximum.

These line-narrowing effects occur only when the
phase of the decaying signal is preserved by a measuring
process such as heterodyning and do not occur if phase
information is destroyed by a process such as measuring
the power spectrum. This is easily seen by calculating
the power spectrum IF + iG 1 2 = F2 + G2 = er 2 TL(x).
The narrowing term [bracketed in Eq. (1)] is absent, and
the spectrum has its full natural width. For k -d 0, the
algebra is slightly more complicated, but the conclusion
is unchanged. Temporal resolution does not result in
line narrowing when phase information is lost.

As a physical example of this procedure, consider
analyzing radiation with a Fabry-Perot interferometer
used as a spectrometer, followed by a photomultiplier
or photographic film used as a detector. Such a system
measures the power spectrum, and a shutter, introduced
between the radiation source and the interferometer to
perform time-delayed measurements, would not result
in a narrower spectrum. The late radiation here does
not have any narrower spectrum than the average of all
the radiation. If the shutter were placed between the
interferometer and the detector, however, the opposite
conclusion would be reached. The radiation interferes
with itself (heterodyne) in the Fabry-Perot interfer-
ometer, thereby extending the measurement interval,
and the resulting spectrum is narrower. Lynch et al. 15
have demonstrated exactly this effect with Mbssbauer
apparatus. The signal from the early part of the decay
is allowed to interfere with that from the later part of
the decay, thus preserving the phase information re-
quired for line narrowing.

Although the foregoing discussion dealt with the
spectrum of a decaying oscillation, finding the center
of a decay-broadened spectral line presents the same
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problem. For example, in time-resolved level-crossing
spectroscopy,4 the signal is narrowed in frequency (or
applied field) by appropriate timing of the pulsed ex-
citation and delayed observation. In fact, expansion
of the general expression for time-resolved level-
crossing signals [Eq. (4) of Ref. 4] in the limit of short
excitation and observation intervals yields Eq. (1)
above, as might be expected. In quantum-beat spec-
troscopy, the frequency of a decaying oscillation may
be measured as levels are brought near their crossing
point by external fields,'6 and this technique is exactly
analogous to time-resolved level-crossing spectros-
copy.

In order to study the possible experimental advan-
tages of time-resolved spectroscopy, artificial data have
been generated by adding JR/N noise to signals of the
form of Eq. (1). (It is assumed that any experiment has
been improved to the point at which noise is dominated
by counting statistics.) Symmetric and slightly
asymmetric data with small, medium, and large S/N
have been least-squares fitted with both symmetric and
slightly (variable) asymmetric line shapes. Changing
the noise spectrum from white noise to Gaussian had
little effect on the results. Several thousand runs have
been tabulated and appropriate statistical procedures
performed. The principal conclusion is that spectros-
copy experiments producing perfectly symmetrical data
do not benefit from time-resolved narrowing techniques,
but others do.

The numerical studies show that symmetric data
fitted by a symmetric line shape produce a center fre-
quency correct to within statistical error, with precision
governed by S/N (number of counts). If the data and
fitted line shape have a fixed asymmetry, the result is
the same. The real danger arises when the data have
some asymmetry that is not known [asymmetry in the
spectrum is equivalent to a phase shift S in the time-
dependent signal S(t)]. In the presence or absence of
a known asymmetry, an unknown asymmetry causes
large shifts of the center frequency, and a fitting pro-
gram cannot detect the error!

The data for the various time delays of Fig. 3 have
been fitted, and the results are summarized in Fig. 4. If
the asymmetry of the fitting program is fixed, the error
can be much larger than the precision determined by the
x of the fit, and a large hidden error results. On the
other hand, if the program is allowed to vary the
asymmetry, the high correlation between it and the
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Fig. 3. A set of simulated data for several different time
delays and their least-squares fits. The data have a small,
noise-hidden asymmetry, but the fitted curves are sym-
metric.
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Fig. 4. The results of the fits in Fig. 3 (circles) show a residual
error that decreases with increasing time delay. The bars are
the standard error from 20 runs. Even though the S/N is
lower at large T, the oscillations in the wings help locate the
center. The results of fits with a variable asymmetry (trian-
gles) having the wrong functional form also show residual
error. The error bars are larger because of the high correlation
of asymmetry and center frequency. The data had a small
sloping baseline (about 0.5%) but were fitted with a signal
having an asymmetry (odd term) that could be varied by the
program.

center frequency results in a large uncertainty from the
fitting procedure (Fig. 4), and in some cases it even fails
to converge. Even with the variable asymmetry, there
is significant remaining error if the functional form is
not correct (e.g., sloping baseline instead of odd term).
In both cases, time-delayed signal narrowing results in
significant reduction of the error even though there is
some (appropriate) loss of internal precision (Fig. 4).

In conclusion, the wide variety of line-narrowing
methods, including the separated oscillating-fields
technique, all share the common feature of waiting for
a transient state to evolve for some fixed delay time.
The resulting signals are narrower and weaker. The
numerical studies reported here show that precision
measurements benefit considerably from this time-
resolved line narrowing, unless the experimenter has
extraordinarily accurate knowledge of the signal shape.
Since unknown systematic effects usually limit the
ultimate accuracy of experiments, time-resolution
techniques are usually desirable.
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