Biomass Feedstock-based Technology

Professor Devinder Mahajan

NYS SBDC/NYSERDA
The Directions of Renewable Energy
Shaping The Future of Business on Long Island

June 8, 2011

*dmahajan@notes.cc.sunysb.edu
World Energy Consumption - Projected

Worldwide CO$_2$ Emissions

Figure 10. World energy-related carbon dioxide emissions

Sectors that directly affect the public

Direct
• Cars: Gasoline, diesel
• Home heating: Natural gas or Oil
• Electricity

Distributed
- Jet fuel
- Diesel: Trucks, buses (transport food delivery, etc)
Topics Covered

Topic 1: Biofuels: definition and background
Topic 2: 1st Generation biofuels
Topic 3: 2nd Generation biofuels
Topic 4: New York State Initiatives
Topic 5: Relevance to Long Island Initiatives
Topic 1

Biofuels: Definition and Background
Definition:
Fuels derived from CO$_2$-net neutral feedstocks.

Impact Sectors
• Transportation
• Utilities
• Manufacturing

Gasoline Consumption:

<table>
<thead>
<tr>
<th>Year</th>
<th>Billion gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>372</td>
</tr>
<tr>
<td>2009</td>
<td>346</td>
</tr>
</tbody>
</table>

Goal: Replace 75% oil imports by 2025.
Topic 2
1st Generation Biofuels

- Bioethanol
- Biodiesel
Biofuels

<table>
<thead>
<tr>
<th>Target Fuel</th>
<th>2005</th>
<th>2012</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(billion gallons/year)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioethanol [U.S.]*</td>
<td>5</td>
<td>7.5</td>
<td>60</td>
</tr>
<tr>
<td>Biodiesel [U.S.]**</td>
<td>0.6</td>
<td>1.3 (2008)</td>
<td>---</td>
</tr>
<tr>
<td>Bioethanol [Brazil]**</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Corn based
**Data from NBB
***Sugarcane based (45% of the world total).
Topic 3

2nd Generation Biofuels
Drivers

U.S. Energy Independence and Security Act of 2007:
136 billion L of renewable biofuels by 2022.
- corn-based ethanol: 57 billion L
- At least 61 billion L from cellulosic

EPA Ruling- 01/21/2011
- Vehicles 2001 or later: up to 15% ethanol
Feedstocks

- Biogas
- Algae
- Cellulosic Materials
Biogas: A Natural Source of Bio-methane
Animal Waste

<table>
<thead>
<tr>
<th>Animal</th>
<th>Animal weight (lbs)</th>
<th>Total manure & urine (gal/day)</th>
<th>Biogas production* ft³/head/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy Cow</td>
<td>1400</td>
<td>12.5</td>
<td>46.4</td>
</tr>
<tr>
<td>Beef Feeder</td>
<td>800</td>
<td>6.1</td>
<td>27.6</td>
</tr>
<tr>
<td>Market Hog</td>
<td>135</td>
<td>1.35</td>
<td>3.9</td>
</tr>
<tr>
<td>Poultry Layer</td>
<td>4</td>
<td>0.032</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Advantages

- Readily biodegradable organic matter content of manure.
- Reduction of odor by 50-98%.
- Reduction of pathogens by 90%.

Courtesy: M. Smith, USDA, 2009
MSW

Composition

- 70-80% of MSW is “organic”
- Landfills: 55% US waste
 - 3 lbs person\(^{-1}\) day\(^{-1}\)
 - 50% CH\(_4\), 50% CO\(_2\)
 - 6.2-270 m\(^3\) tonne\(^{-1}\)
 - (3.1-135 m\(^3\) person\(^{-1}\) yr\(^{-1}\))
- Other processing feasible
- Source separation advantageous

Advantages

- For a landfill: reduces GHG impact, odor control
- Other processes: residues may have value
Anaerobic Digestion (ASD) Process

\[
\begin{align*}
\text{Methane (CH}_4) \\
\text{Carbon Dioxide (CO}_2) \\
\text{Trace gases (H}_2\text{S, NH}_3, \text{H}_2, \text{N}_2, \text{CO} \ldots)
\end{align*}
\]

Biogas

\[\text{Influent} \rightarrow \text{Anaerobic Digester} \rightarrow \text{Effluent} \]

- Unstable organics
- Odorous
- Pathogens

- Stabilized organics
- Low odor
- Reduced pathogens

Courtesy: M. Smith, USDA, 2009
Biogas Composition

<table>
<thead>
<tr>
<th>Component</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄*</td>
<td>55-70 % by vol.</td>
</tr>
<tr>
<td>CO₂*</td>
<td>30-45% by vol.</td>
</tr>
<tr>
<td>H₂S*</td>
<td>200-4000 ppm by vol.</td>
</tr>
<tr>
<td>NH₃**</td>
<td>0-350ppm</td>
</tr>
<tr>
<td>Humidity***</td>
<td>Saturated</td>
</tr>
<tr>
<td>Energy Content*</td>
<td>20-25 MJ/m₃</td>
</tr>
</tbody>
</table>

*RISE-AT (Regional Information Service Center for South East Asia on Appropriate Technology), 1998. Review of current status of anaerobic digestion technology for treatment of municipal solid waste.
*** Rakičan, 2007. Biogas for farming, energy conversion and environment projection

Courtesy: M. Smith, USDA, 2009
Biogas: Challenges

• Economical method to extract bio-methane from biogas.
Algae- A natural source of Bio-oils

Ref.: Pienkos et al., IEEE Spectrum, November 2010
What is Algae?

- Algae are microscopic organisms that are oil factories.
- Algae uses sunlight to make oils:
 \[\text{CO}_2 \rightarrow \text{Sugars} \rightarrow \text{Oils} \]
- Oil yields vary with algae strain (~30,000) but can be as high as 50%.
 - Soybean: 500 L oil/hectare/year
 - Algae: 9,000 – 47,000 L oil/hectare/year
- Oil is very similar to vegetable oils.
- Energy density: similar to gasoline whereas ethanol is lower.
Algae - Advantages

- Algae can be grown using land and water unsuitable for plant or food production, unlike some other first- and second-generation biofuel feedstocks.
- Select species of algae produce bio-oils through the natural process of photosynthesis — requiring only sunlight, water and carbon dioxide.
- Algae have the potential to yield greater volumes (2000 gallons) of biofuel per acre per year of production than other biofuel sources. Other sources yield lower.
 - Palm: 650 gallons
 - Sugar cane: 450 gallons
 - Corn: 250 gallons
 - Soy: 50 gallons
Algae- Advantages

• Algae highly productive. Large quantities of algae can be grown quickly, and screened rapidly.
• Bio-oils from photosynthetic algae could be used to manufacture a full range of fuels: gasoline, diesel and jet fuel.
• Growing algae consume carbon dioxide; this provides greenhouse gas mitigation benefits.
Algae Production-I: Open Shallow Ponds
Algae Production-II: Photobioreactors
Algae Production-III: Fermentors

- Can be grown in stainless steel tanks but not via photosynthesis.
- Add sugars, very similar to ethanol

Not of interest.
Bio-Oil form Algae: Challenges

Present technology:
2010 $: 10 - 35 / gallon oil equivalent

- Screening for novel strains that can grow quickly and efficiently.
- Minimize water losses during growth (re.: open ponds)
- Minimize: 1) growth of useless competitors (weeds), 2) pathogens, and 3) predators.
- Dewatering after growth: 1 g algae/L water
- Product focus: diesel, gasoline and jet fuel

Projection (2020): $75 - $100 / barrel
Who is interested?

- Over 100 start-ups (~$150 million venture funds).
 - Algenol, Aurora Algae, Sapphire Energy, Solazyme, Solix Biofuels

- ConocoPhillips, Chevron, ExxonMobil, Royal Dutch Shell.

- Product focus: diesel, gasoline and jet fuel
Cellulosic Materials
Biomass Feedstock

“Billion ton” study (USDA/DOE)

- **Agriculture**: Corn stover, wheat straw, soybean residue, manure, switchgrass, other energy crops.
- **Forest**: Forest thinnings, fuelwoods, logging residues, wood processing and paper mill residues, urban wood wastes.
Biomass: Structural Units

Cellulose: Polymer and cross-linkages among glucose units.

Hemicellulose: 5, 6 carbon sugars, sugar acids, acetyl esters - more complicated than cellulose.

Lignin: Phenolic polymers - impart strength to plants.

Source: US DOE

Typical composition
- Carbohydrates/Sugars: 75%
- Lignin: 25%
Biomass to Fuels

Thermochemical Route: Syngas Platform

- **SYNGAS (CO, CO₂, H₂)**
- **Cat.**
- **Methanol** (Feedstock)
- **Hydrogen** (direct & Indirect)
- **F-T Liquids** (Biorefinery Concept)
- **Alcohols (C₂+)**
Challenge

Total Carbon Utility with Product specificity
- Atom Economy

Approach

Process Chemistry

Liquid Phase Low Temperature (LPLT) concept
- Single-site or Nano catalysis

Process Engineering

Heat management
- Microchannel Reactors
Topic 4
New York State Initiatives
Renewable Fuels Roadmap and Sustainable Biomass Fuels Supply

Released 2010

http://www.nyserda.org/publications/renewablefuelsroadmap/default.asp
Renewable Fuels Roadmap and Sustainable Biomass Fuels Supply

Released 2010
http://www.nyserda.org/publications/renewablefuelsroadmap/default.asp

• NYSERDA (NYS Energy Research and Development Authority)
• NYSDEC (NYS Dept. of Environmental Conservation)
• NYSDAM (NYS Dept. of Agriculture and Markets)
NYS Roadmap Highlights

• Assesses the prospects for the expansion of biofuel production in New York State, focusing on resource availability and economic and environmental impacts.

• Topics covered:
 • Biodiesel
 • Biofuels
 • Cellulosic ethanol
 • Competing uses
 • Conversion technology
 • Feedstock
 • Greenhouse gas emissions
 • Life cycle analysis
 • Renewable energy
 • Sustainability
 • Transportation fuels
Key Issues Considered: 11

2. Analysis of Sustainable Feedstock Production Potential in NYS
3. Feedstock Transportation and Logistics
4. Life Cycle Analysis and Public Health Assessment of Biofuel Production, Transportation, and Use in New York State
5. Technologies for Biofuels Production
6. Biofuel Industry Economic Impacts and Analysis.
8. Sustainability Criteria.
Expanding Biofuels in NYS

Scenarios considered: 3

Scenario 1: “Big Step Forward”
- Focus on large (90 MGY) biofuel production plants.
- Rapid development of lignocellulosic feedstock resources is assumed on available rural lands.
- Total New York production of renewable gasoline substitutes would reach 508 MGY.
- Under this scenario, New York meets about 5.6% of its projected gasoline consumption with home grown biofuels.
Expanding Biofuels in NYS

Scenario 2: “Giant Leap Forward”

• Some cropland is used for biofuel production.
• Assumes that 2nd generation lignocellulosic biorefineries (biochemical and thermochemical systems) are ready for commercial deployment.
• Large lignocellulosic biorefinery clusters (average capacity 354 MGY) exist in a centralized collection/distribution system.
• Total New York liquid biofuel production including grain derived ethanol would reach 1,449 MGY.
• New York could meet about 16\% of its projected transportation gasoline consumption with home grown biofuels.
Expanding Biofuels in NYS

Scenario 3: “Distributed Production”
• Same feedstock production and similar conversion technology as in Scenario 2.

• This scenario reflects a more decentralized fuel production industry with no individual biorefinery capacity exceeding 60 MGY, except for the existing grain ethanol biorefineries.

• Total New York liquid biofuel production including grain-derived ethanol would reach 1,449 MGY.

• New York could meet about 16% of its projected transportation gasoline consumption with home grown biofuels.
Biomass Capacity

- Of the State’s 18.5 million acres forest lands, nearly 15.8 million acres is producing or is capable of producing woody biomass.

- New York agricultural industry currently produces ~12 million dry tons biomass annually and produces another 9.5 Mdt/year of biomass from forests.

- The current forest products industry uses 2.5 Mdt/year. Corn provides the greatest amount of biomass from a single agricultural crop in the State (60%) and much of this is used by the New York dairy industry.
Biofuel Production Technologies

• Fifteen current technologies were evaluated for converting solid biomass to liquid fuels.

• The Roadmap summarized process descriptions, current development status, and estimated economic and performance attributes for the year 2020.

• Only 3 are currently in commercial use.

• By 2020, the total capacity for lignocellulosic ethanol is estimated to be between 508 and 1,449 million gallons.
Topic 5
Long Island Initiatives
Research Facility
- New York State funded $45 million at SBU.
 - Build the Advanced Energy Research & Technology Center (AERTC)
- NSF C-BERD will be housed in this building.

Characterization Facilities
- Center for Functional Nanomaterials (CFN)
 - A U.S. Department of Energy (US DOE) $85 million facility at BNL.
Stony Brook University R&D Park

AERTC

CEWIT
AERTC: An Energy Efficient Building

Leadership in Energy & Design (LEED) Certification

Criteria
- Design
- Construction
- Operation

Levels (based on 100 points) in LEED 2009
- Platinum (80+)
- Gold (60-79)
- Silver (50-59)
LEED Features

- **Construction phase**: Requires materials within 500 miles radius - provided jobs within local communities
- **Operation**:
 - **Water system**: Run rainwater is collected and used for non-drinking purposes.
 - **Power savings**: Sensors for lighting throughout.
 - **Solar supplement**: Shades to minimize AC usage.
 - **AC**: 4 Ice slabs at night for peak shaving and daytime use of AC. Chilled water for AC.
 - **Parking Lot**: 30kW solar panels to provide LED

- Provide charging station for 4 electric vehicles (A new US DOE grant).
Renewable R&D at Stony Brook

Green Buildings
CEWIT
AERTC

Electric Delivery Systems
- Smart Grid

Green Energy Projects
- Solar
- Biomass to Biofuels
- Geothermal

Carbon Capture Systems Coupled with Fossil Fuels
- CCS
Electric Delivery System: Smart Grid

Key Elements
- Security
- Reliability
- Renewable fuel choice and integration
 - Solar
 - Biofuels from biomass processing
- Wind
- Sustainability
Long Island's Smart Energy Corridor

A Collaborative Project

SBU PI:
Professor E. Feinberg, AMS Dept.
Long Island's Smart Energy Corridor

- SUNY Farmingdale Smart Campus & Renewable and Sustainable Resource Center
- Home Automation with Smart Meters
- Commercial Building Automation with Smart Meters
- Industrial Building Automation with Smart Meters
- Solar
- Wind
- PHEV
- Wireless
- Automated Distribution
- SUNY Stony Brook AERTC
- Smart Substation
Renewable Fuels for Smart Grid - Liquids

Focus
- Smart grid and renewable fuels integration
- Skid-mounted (small scale) renewable fuel plants

Liquid Fuels
- Focus: Transportation and power peak-shaving fuels
- Source: Biomass derived biofuels via pyrolysis and thermochemical routes.
 - Gasoline, diesel, ethanol, methanol and butanol.
Renewable Fuels for Smart Grid- Biogas

Why Biogas?
- Biogas- a natural source of energy. Capturing fugitive methane has two advantages:
 - Minimize methane release to the atmosphere.
 - Simultaneously reduce imported natural gas
 - Greenhouse factor: $\text{CH}_4 (17); \text{CO}_2 (1)$

Approach
- Biogas assessment and potential on Long Island
 - Regional and Global application
- Biogas upgrading to pipeline quality gas
Biogas on Long Island:
Existing & Potential Sources
<table>
<thead>
<tr>
<th>Compound Name</th>
<th>Chemical Formula</th>
<th>Biogas (%)</th>
<th>Natural Gas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>CH$_4$</td>
<td>50-75</td>
<td>70-90</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>CO$_2$</td>
<td>25-50</td>
<td>0-8</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>N$_2$</td>
<td>0-10</td>
<td>0-5</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>H$_2$</td>
<td>0-1</td>
<td>Trace</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>H$_2$S</td>
<td>0-3</td>
<td>0-5</td>
</tr>
<tr>
<td>Oxygen</td>
<td>O$_2$</td>
<td>0-2</td>
<td>0-0.2</td>
</tr>
<tr>
<td>Ethane</td>
<td>C$_2$H$_6$</td>
<td>Trace</td>
<td>0-20%</td>
</tr>
<tr>
<td>Propane</td>
<td>C$_3$H$_8$</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>Butane</td>
<td>C4H${10}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Biogas Sources

- Landfills
 - MSW, C&D, and Yard Waste

- Wastewater Treatment Plants
 - Sewage sludge

- Agricultural Residues
 - Plant waste and animal manure
Landfills

<table>
<thead>
<tr>
<th>Facility</th>
<th>Brookhaven</th>
<th>110 Sand Company</th>
<th>Blydenburgh</th>
<th>Oceanside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Landfill Area (acres)</td>
<td>150</td>
<td>116</td>
<td>30.5</td>
<td>190</td>
</tr>
<tr>
<td>Area Used for Gas Collection (acres)</td>
<td>120</td>
<td>116</td>
<td>30.5</td>
<td>160</td>
</tr>
<tr>
<td>Number of Flares</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Total Gas Collected (ft³)</td>
<td>601,940,000</td>
<td>624,320,000</td>
<td>306,400,000</td>
<td>110,440,000</td>
</tr>
<tr>
<td>Energy Produced (MW-hrs)</td>
<td>64</td>
<td>-</td>
<td>-</td>
<td>3,617</td>
</tr>
</tbody>
</table>
Landfills

<table>
<thead>
<tr>
<th>Landfill Name</th>
<th>County</th>
<th>Waste in Place (tons)</th>
<th>Opening Year</th>
<th>Closing Year</th>
<th>Landfill Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Hampton SLF</td>
<td>Suffolk</td>
<td>1,000,000</td>
<td>1942</td>
<td>1993</td>
<td>Town of E. Hampton</td>
</tr>
<tr>
<td>Holtsville SLF</td>
<td>Suffolk</td>
<td>-</td>
<td>1939</td>
<td>1974</td>
<td>Town of Brookhaven</td>
</tr>
<tr>
<td>North Sea LF</td>
<td>Suffolk</td>
<td>1,102,714</td>
<td>1963</td>
<td>1995</td>
<td>Town of Southampton</td>
</tr>
<tr>
<td>Port Washington LF</td>
<td>Nassau</td>
<td>2,161,000</td>
<td>1983</td>
<td>1991</td>
<td>North Hempstead</td>
</tr>
</tbody>
</table>
3.5 million tons of waste produced annually
- 1 million tons is recycled
- 1.5 million tons is incinerated
- 1 million tons is transported off island

According to NYS, 65% of the waste stream is composed of degradable items in the form of paper and organics.

Source: Tonjes, D.J. Stony Brook University
MSW

<table>
<thead>
<tr>
<th>Material</th>
<th>Dry Weight (ton)</th>
<th>Yield (ml of CH$_4$/dry g)†</th>
<th>Total CH$_4$ Yield (billion ft3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coated Paper</td>
<td>14,570</td>
<td>84.4</td>
<td>0.04</td>
</tr>
<tr>
<td>Office Paper</td>
<td>22,466</td>
<td>217.3</td>
<td>0.16</td>
</tr>
<tr>
<td>Newspaper</td>
<td>14,570</td>
<td>74.33</td>
<td>0.03</td>
</tr>
<tr>
<td>Corrugated</td>
<td>60,895</td>
<td>152.3</td>
<td>0.30</td>
</tr>
<tr>
<td>Others</td>
<td>181,326</td>
<td>74.33</td>
<td>0.43</td>
</tr>
<tr>
<td>Food Scraps</td>
<td>54,570</td>
<td>300.7</td>
<td>0.53</td>
</tr>
<tr>
<td>YardTrimming</td>
<td>9,760</td>
<td>69.2</td>
<td>0.03</td>
</tr>
<tr>
<td>Wood</td>
<td>8,900</td>
<td>62.6</td>
<td>0.07</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1.29</td>
</tr>
</tbody>
</table>

C&D

<table>
<thead>
<tr>
<th>Facility</th>
<th>Amount of Waste (tons)</th>
<th>CH$_4$ Yield (billion ft3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blydenburgh</td>
<td>Wood – 34,612</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Cardboard – 8,340</td>
<td>0.04</td>
</tr>
<tr>
<td>110 Sand Company</td>
<td>Wood – 248,435</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Cardboard – 59,865</td>
<td>0.29</td>
</tr>
<tr>
<td>Brookhaven</td>
<td>Wood – 105,297</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>Cardboard – 25,493</td>
<td>0.12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1.23</td>
</tr>
</tbody>
</table>
Yard Waste

- 365,000 tons of yard waste annually
- Estimated 170 million ft³ of CH₄ per year

<table>
<thead>
<tr>
<th></th>
<th>AD vs. LF</th>
<th>AD vs. WC</th>
<th>WC vs. LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Production</td>
<td>+380,000</td>
<td>+407,910</td>
<td>-30,546</td>
</tr>
<tr>
<td>(mmBTU/yr)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHG Emissions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(tons/yr CO₂ eq.)</td>
<td>-134,379</td>
<td>-93,470</td>
<td>+42,075</td>
</tr>
<tr>
<td>NOₓ (tons/yr)</td>
<td>-53.8</td>
<td>-55.4</td>
<td>+1.7</td>
</tr>
<tr>
<td>SOₓ (tons/yr)</td>
<td>-75.4</td>
<td>82.2</td>
<td>+6.83</td>
</tr>
<tr>
<td>PM-10 (tons/yr)</td>
<td>-64.4</td>
<td>-56.0</td>
<td>-8.4</td>
</tr>
<tr>
<td>VOC (tons/yr)</td>
<td>-9.5</td>
<td>-4.2</td>
<td>-5.2</td>
</tr>
<tr>
<td>Lead (lbs/yr)</td>
<td>-194.7</td>
<td>-205.0</td>
<td>+10.4</td>
</tr>
</tbody>
</table>

AD: Anaerobic digestion; LF: Landfilling without energy recovery; WC: Open window composting.

34 WWTPs located on Long Island
– 12 in Nassau County; 22 in Suffolk County

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>County</th>
<th>Authority Name</th>
<th>Actual Flow (mgd)</th>
<th>Potential Electric Capacity (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Beach WPC Plant</td>
<td>Nassau</td>
<td>Long Beach DPW</td>
<td>5</td>
<td>122</td>
</tr>
<tr>
<td>Bay Park STP & SD#2</td>
<td>Nassau</td>
<td>Nassau County DPW</td>
<td>53</td>
<td>1178</td>
</tr>
<tr>
<td>Cedar Creek STP & SD#3</td>
<td>Nassau</td>
<td>Nassau County DPW</td>
<td>57</td>
<td>1268</td>
</tr>
</tbody>
</table>
On average a WWTP will process 450 L per day of wastewater per person served.

The total solids present in average sanitary wastewater is 800 mg/L.

An estimated 207,406 tons of sludge is processed yearly by WWTPs on Long Island.

Source: Hammer, M. J *Waste and Wastewater Technology* 2001
Assume volatile solids are 75%.
Assume 50% reduction in volatile solids after digestion.
Assume 16 cubic feet of gas produced per lb of volatile solids destroyed.

Estimated gas production: 2.5×10^9 ft3

Source: Hammer, M. J Waste and Wastewater Technology 2001
Agricultural Residue

- 35,682 acres of farmland on Long Island
 - 75% is cultivated for crops
 - 25% used for pastures, woodland, and other usage.

- On farm composting is the most common method used for waste disposal.

- Assume 33,000 ft3 acre$^{-1}$ year$^{-1}$ of CH$_4$

883 x 106 ft3

Conclusion

- Total biogas potential
 - = 7.7 billion cubic feet
 - = 2.3 Twh of electricity

 = 12% of total electricity generated by LIPA from natural gas
Conclusion

<table>
<thead>
<tr>
<th>Potential Source</th>
<th>Currently Exploited</th>
<th>Current/Potential CH$_4$ Yield (billion)</th>
<th>Optimal Use</th>
<th>Technology Barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sludge</td>
<td>No</td>
<td>2.49 ft3</td>
<td>Pipeline quality gas</td>
<td>ADs are needed</td>
</tr>
<tr>
<td>LGRF</td>
<td>Yes</td>
<td>1.64 ft3</td>
<td>Electricity</td>
<td>Upgrading Technology</td>
</tr>
<tr>
<td>MSW</td>
<td>No</td>
<td>1.29 ft3</td>
<td>Pipeline quality gas</td>
<td>AD; Upgrading technology</td>
</tr>
<tr>
<td>C&D</td>
<td>No</td>
<td>1.23 ft3</td>
<td>Pipeline quality gas</td>
<td>Upgrading technology</td>
</tr>
<tr>
<td>Agriculture Waste</td>
<td>No</td>
<td>0.88 ft3</td>
<td>On-site usage; Electricity</td>
<td>ADs are needed</td>
</tr>
<tr>
<td>Yard Waste</td>
<td>No</td>
<td>0.17 ft3</td>
<td>On-site usage</td>
<td>ADs are needed</td>
</tr>
</tbody>
</table>
Center for Bioenergy Research and Development (CBERD)
C-BERD

Founding Members
Kansas State University (K-State)
North Carolina State University (NCSU)
South Dakota School of Mines and Technology (SDSMT)
Stony Brook University (SBU)
University of Hawaii (UH)

Total industry membership: 25
Mission:
• To train students at all levels.
• Develop renewable energy technologies working with industry.
Question?