This is an 8 week asynchronous online course with live, proctored exams.

BIO 310 in the Summer 2 extended is administered entirely online except for:

three required in-person exam sessions consisting of:

Exam 1 (Tuesday, July 11th from 6:30 to 8:30 PM)
Exam 2 (Tuesday, August 1st from 6:30 to 8:30 PM)
Exam 3 (Thursday, August 17th from 6:30 to 9:30 PM)

Exams are given on West Campus in Humanities 1003 OR Through the United States via approved Remote Test Center Sites. Anyone wishing to schedule a remote test center exam should contact Prof. Souza for approval of the site prior to June 3rd. See http://www.ncta-testing.org/find-a-cctc-participant for potential sites near you. Fees for remote test centers are the responsibility of the student and are paid to the test center directly

Syllabus

Part 1: Course Information

Instructor Information

Course Content Instructor: Susan Erster, PhD
Office: Life Science Building, Room 316
Office Hours: By Appt.
Office Telephone: 631-632-8562
E-mail: Susan.Erster@stonybrook.edu

Online Course Faculty Administrator: Joanne Souza, PhD
Office: Life Science Building, Room 378
Office Hours: By Appt.
Office Telephone: 631-632-8548
Email: Joanne.Souza@stonybrook.edu
Course Description

The cell is studied as the unit of structure, biochemical activity, genetic control, and differentiation. The principles of biochemistry and genetics are applied to an understanding of nutrition, growth, and development.

Prerequisite

C or higher in BIO 202 or equivalent; C or higher in BIO 203; CHE 321 or CHE 331 or CHE 341

Textbook & Course Materials

Required Text

- Available at the University Bookstore at http://www.stonybrook.edu/provostliasn/bookstore/course-materials.shtml

Course Technical Requirements

- Internet connection (DSL, LAN, or cable connection desirable)
- Access to Blackboard
 - Browsers by Operating System
 - Windows 8, Windows 10
 - Internet Explorer 11
 - Firefox 31+
 - Chrome 36+
 - Edge 20+
 - Windows 7, Vista
 - Internet Explorer 11
 - Firefox 31+
 - Chrome 36+
 - Mac OS X 10.7, 10.8, 10.9, 10.10, 10.11& 10.12
 - Safari 6+
 - Firefox 31+
 - Chrome 36+
 - Adobe Acrobat Reader and Quicktime and/or Windows media
 - Java: Update to newest version, if prompted
Course Structure

This course, except for three live, proctored exams [either on West Campus in the evening on the stated dates above or at approved (by Sunday, July 2nd) remote test center facilities], will be delivered entirely online, asynchronously, through the Blackboard course management system. You will use your NetID account to log in to the course from the Blackboard login page (http://blackboard.stonybrook.edu).

- In Blackboard, you will have access to the following:
 - Course and lectures learning objectives
 - Video lecture modules and animated movies (45 hours total)
 - Online quizzes - designed to assist you in gaining higher levels of content mastery.
 - Asynchronous discussion resources - Discussion board submissions consist of student collaborative brainstorming sessions where you will discuss strategy together mentored by teaching assistants with the purpose of helping you to solve more difficult, complex questions. These discussions will be mentored by Teaching Assistants and faculty. You will be expected to work through and discuss strategies, needed relevant concepts, potential solutions, and falsification of potential solutions to arrive at the most likely correct solutions to stated problems.

Estimated Weekly Time Budget:

- Video lecture hours: approx. 6
- Textbook: 2
- Quiz hours: 2
- Discussion hours: 1

Each week, you will access the lecture folders assigned for the week under your assignments tab on Blackboard. Within those folders will be the lecture videos separated into video modules (usually A, B, C, D), textbook readings, movie assets, lecture PowerPoints, and graded assignment due dates for the week.

After watching each lecture module, you will complete a graded learning asset Equiz consisting of between 5 and 9 questions of varying levels of difficulty beginning at the foundational
conceptual/definitional level, then adding detail of understanding and complexity, and lastly applications of content. These quizzes are designed to assist you in learning content while building your skill level in answering more complex questions per module of the course. Each correct answer will earn one point toward your learning asset grade. See detailed directions on Blackboard.

- Each week you will also be asked to contribute to brainstorm toward the solving of a more complex/novel problem via discussion board work/debate. See grading rubric on Blackboard for more information. You are expected to only work on one question of 5-6 questions available but to post more than once during the week to the brainstorming session until the due date on Sunday.

- These quizzes and discussion sessions are designed to help you learn and retain the material in the course and to solve more complex problems such as those on the exams and later standardized preparatory exams (MCAT, DAT, etc) as well as those in research and medical applications. These assets are in place to assist you to do better on your exams and beyond so we suggest you use them toward that end.

- In addition, there will be a general discussion board that is ungraded where students can ask questions of the faculty and the teaching assistants in any area of the course.

- There are three in-person, proctored exams, each covering approximately one third of the content, given at either Stony Brook University West Campus in the evening or other approved remote testing facilities in the United States. If you cannot make it to West Campus for exams, contact Prof. Joanne Souza at joanne.souza@stonybrook.edu prior to Sunday, July 2nd to schedule your exams at approved remote testing facilities.

- If you need technical assistance at any time during the course or to report a problem with Blackboard you can:
 - Visit the Stony Brook University Student Help Desk Page
 - Phone: (631) 632-9602
 - E-Mail: helpme@stonybrook.edu
 - Live Chat: Chat Live with the TLT Student Help Desk!

Contact the University Service Desk at (631) 632-9602

Important Note: This syllabus, along with course assignments and due dates, are subject to change. It is the student’s responsibility to check Blackboard for corrections or updates to the syllabus. Any changes will be clearly noted in course
Part 2: Course Learning Objectives

The course is designed for students with a strong background and interest in biology. The course will present our current understanding of eukaryotic cellular architecture and the molecular basis for most general cellular functions. Emphasis will be placed on the methodologies and approaches of ongoing research efforts, so that students will be more prepared to read research papers published in scientific journals.

At the end of this course a student will have an understanding of eukaryotic cellular architecture and the molecular basis for most general cellular functions. Students will also have an understanding of the application of experimental techniques in cell biology and their use in biological research. Upon completion of BIO 310, students will be able to:

1. Differentiate between eukaryotic & prokaryotic cells, and describe the endosymbiotic theory.
2. Describe the structure or cellular membranes, and correlate membrane structure with membrane functions.
3. Explain the structure of the genetic material and its relationship to nuclear structure and function. Define chromatin remodeling and correlate chromatin structure with gene expression and cell cycle progression.
4. Discuss the structure, roles and interactions of organelles. Integrate the abundance/absence of organelles with cellular activities.
5. Provide a conceptual framework for the mechanisms by which proteins, lipids, and nucleic acids, and carbohydrates are moved from their sites of synthesis to their ultimate locations. Predict the mechanisms involved in cellular trafficking of a given macromolecule.
6. Explain the mechanism and regulation of transport of membrane vesicles to their destinations. Differentiate the various modes of vesicular transport.
7. Discuss gene expression, and correlate the multiple levels of gene expression regulation with cell activity.
8. Define signal transduction, and compare and contrast the molecules and molecular interactions utilized by cells to transduce diffusible extracellular signals into biochemical changes within the cell.
9. Describe the molecules and molecular interactions utilized by cells to communicate and sense neighboring cells and the structural environment.
10. Explain the structure of the cytoskeleton and demonstrate an understanding of the ways the cytoskeletal elements enable cell activities such as motility, intracellular transport, and regulation of gene expression.
11. Elaborate on the nature of pathogens, and differentiate between the innate and adaptive immune responses to pathogens.
12. Provide a conceptual overview of cell cycle regulation. Correlate the abundance, location, and activation of cell cycle regulators with cell cycle progression.
13. Articulate the ways in which cell processes such as signal transduction and cell cycle regulation can be altered, resulting in cancer.
14. Describe the basic mechanism of programmed cell death and necrotic cell death. Establish the impact of proliferative and apoptotic signaling in normal and abnormal cells.

You will meet the objectives and learning outcomes listed above through a combination of the following activities in this course:

- Watch assigned lecture module videos and movie assets
- Review the comparable content in the textbook
- Complete graded learning assets quizzes per module
- Participate in all the discussion board sessions per module
- Complete the three live proctored exams.

Part 3: Grading Policy

Graded Course Activities

Visit the **Assignments** link in Blackboard for details about each weekly assignment and the due dates.

<table>
<thead>
<tr>
<th>Percent of Final Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 %</td>
<td>Approx. 64 quizzes & 8 extensive and comprehensive discussion assignment due Quiz 0 (exam location quiz = 4 bonus quiz points)</td>
</tr>
<tr>
<td>25 %</td>
<td>Exam 1</td>
</tr>
<tr>
<td>25 %</td>
<td>Exam 2</td>
</tr>
<tr>
<td>25 %</td>
<td>Exam 3</td>
</tr>
<tr>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Late Work Policy

Be sure to pay close attention to deadlines—there will be no make-up quizzes, discussions, or exams accepted without documentation of serious and compelling issues submitted within ONE WEEK OF THE MISSED ASSIGNMENT or EXAM. The medical/emergency waiver form is on Blackboard and must be submitted with attachments to the course faculty for potential approval. Examples of acceptable documentation include a physician’s note if you are ill, a letter from a clergyman or other person officiating at a funeral, or proof of death of a close family member.
Viewing Grades in Blackboard

Points you receive for graded activities will be posted to the Blackboard Grade Book. Click on the My Grades link on the left navigation to view your points.

We will update the online grades each time a grading session has been complete—typically within 5 days following the completion of an activity. You will see an announcement on Blackboard when grades are available.

Letter Grade Assignment

Final letter grades assigned for this course will be based on the percentage of total points earned and may be assigned as follows*:

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Percentage</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Range (A- thru A)</td>
<td>88 and up</td>
<td>Nearly Excellent/Excellent Work</td>
</tr>
<tr>
<td>B Range (B-, B, B+)</td>
<td>75-87%</td>
<td>Mostly good work/good work/very good work</td>
</tr>
<tr>
<td>C Range (C and C+)</td>
<td>58 – 74%</td>
<td>Acceptable Work/marginally good work</td>
</tr>
<tr>
<td>D</td>
<td>45-57%</td>
<td>Poor Work</td>
</tr>
<tr>
<td>F</td>
<td>Below 45%</td>
<td>Failing Work</td>
</tr>
</tbody>
</table>

*NOTE: These letter grades are threshold scores only. Actual final scores needed to earn a certain letter grade may be lowered if warranted based on the difficulty of the exams. In other words, if your final total points in the course equal a 89%, you will not earn less than an A.

Part 4: Course Policies

Participation

Students are expected to participate and submit, by the published due dates, all online activities as listed in the weekly assignments. Your participation in the discussions is also required by the due dates noted in the assignments. Faculty will clarify all discussions so as to help you clear up any confusion before exams.

All discussion post submissions are monitored for plagiarism through Safe Assign. All cases of possible plagiarism, including cheating on exams, or other violations of academic integrity will be reported to Academic Judiciary and if found guilty, will result in an F in the course. Please be sure all work is in your own words and properly referenced with internal citations and full references. The discussion board grading rubric showing grading criteria is available on Blackboard.
Build Rapport

If you find that you have any trouble keeping up with assignments or other aspects of the course, make sure you let your instructor know as early as possible. As you will find, building rapport and effective relationships are key to becoming an effective professional. Make sure that you are proactive in informing your instructor when difficulties arise during the semester so that we can help you find a solution including potentially dropping the course.

Complete Assignments

All learning assignments for this course will be submitted electronically through Blackboard and dated according to the date/time submitted as shown on Blackboard. Assignments must be submitted by the given deadline. Extensions will not be given beyond the next assignment except under extreme, documented circumstances. Any requested extensions must be petitioned for by submitting the makeup request form and completing the medical waiver form/proper documentation as shown on the Blackboard site. Failure to provide acceptable documentation that can be authenticated will result in a grade of zero for the missed assignment.

Understand When You May Drop This Course

It is the student’s responsibility to understand when they need to consider dropping from a course. Students are expected to finalize their class schedules by the end of the “Add/Drop” period, which normally ends at the end of the second week of classes during the Fall or Spring semester. The Add/Drop period is shorter during the Summer and Winter Sessions, so always consult the Academic Calendar for the official deadline. Failure to finalize your course registration by the end of the Add/Drop period may have significant consequences; therefore you should always consult with your Undergraduate College Advisor prior to the Add/Drop deadline if you are having trouble completing your schedule. See the Academic Advising website for more information at https://you.stonybrook.edu/firstyear/chapter-ten-academic-advising/

Incomplete Policy

Under emergency, students may petition for an incomplete grade. Circumstances must be documented and significant enough to merit an Incomplete. Inform your instructor of any accommodations needed.

Withdrawals from Classes: The academic calendar, published in the Undergraduate Class Schedule, lists various dates that students must follow. Only the Arts and Sciences Committee on Academic Standing and Appeals or the Engineering and Applied Sciences Committee on Academic Standing may grant permission for a student to withdraw from a course after the deadline. The same
is true of withdrawals that will result in an academic under-load. A note from the instructor is not sufficient to secure a withdrawal from a course in the above circumstances.

Disability Support Services (DSS) Statement

If you have a physical, psychological, medical or learning disability that may impact your course work, please contact Disability Support Services, ECC (Educational Communications Center) Building, room128, (631) 632-6748. They will determine with you what accommodations, if any, are necessary and appropriate. All information and documentation is confidential.

Critical Incident Management

Stony Brook University expects students to respect the rights, privileges, and property of other people. Faculty are required to report to the Office of Judicial Affairs any disruptive behavior that interrupts their ability to teach, compromises the safety of the learning environment, or inhibits students’ ability to learn. Faculty in the HSC Schools and the School of Medicine are required to follow their school-specific procedures.

Academic Integrity/Honesty Statement

Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person’s work as your own is always wrong. Faculty are required to report any suspected instances of academic dishonesty to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology & Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required to follow their school-specific procedures. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at http://www.stonybrook.edu/uaa/academicjudiciary/

The Biology Department at Stony Brook University takes seriously our responsibility to give students an accurate and fair evaluation of their performance in the course. We therefore have a zero tolerance policy towards cheating. Anyone caught cheating in any way will be reported to the Academic Judiciary Committee and, if found guilty, given an F for the course.

Email Policies

Email sent via Blackboard is the principle way we will officially communicate with you for this course. It is your responsibility to make sure you read your email in your official University email account. For most students that is Google Apps for Education (http://www.stonybrook.edu/mycloud)
If you need technical assistance please contact Client Support at (631) 643-9800 or supportteam@stonybrook.edu

Part 5: Topic Outline/Schedule

Important Note: Refer to the Weekly Assignments on Blackboard for specific lectures and graded assignment due dates for each week. Activity and assignment details will be explained in detail within each week’s corresponding Lecture folders. If you have any questions as to the administration of the course or grading, please contact Prof. Souza at joanne.souza@stonybrook.edu or post your question in the administrative forum on Blackboard for a response within 24 hours.

<table>
<thead>
<tr>
<th>Week #</th>
<th>Lect #</th>
<th>Lecture Name</th>
<th>Text Reading</th>
<th>Lecture Video Modules</th>
<th>Quiz & Discussion</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1 6/26</td>
<td>0</td>
<td>Orientation, Academic Integrity, Exam Location</td>
<td>Syllabus & Course Information</td>
<td>Orientation & Academic Integrity Videos</td>
<td>Quiz 0</td>
<td>Wednesday June 28th 11:59 PM</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Cells, Evolution of Life, Macromolecules, Proteins</td>
<td>Chapters 1 & 2</td>
<td>Module 1A</td>
<td>Quiz 1 – 1A</td>
<td>Wednesday June 28th 11:59 PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Module 1B</td>
<td>Quiz 2 – 1B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Module 1C</td>
<td>Quiz 3 – 1C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Module 1D</td>
<td>Quiz 4 – D/E</td>
<td></td>
</tr>
<tr>
<td>Week 2 7/3</td>
<td>4</td>
<td>RNA Processing Protein Folding</td>
<td>Chapter 6</td>
<td>Module 4AB</td>
<td>Quiz 12 – 4AB</td>
<td>Wednesday July 5th 11:59 PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Module 4C</td>
<td>Quiz 13 – 4C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Module 4DE</td>
<td>Quiz 14 – 4DE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Research Methods</td>
<td>Chapters 8 & 9</td>
<td>Module 5A</td>
<td>Quiz 15 – 5A</td>
<td>Wednesday July 5th 11:59 PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Module 5B</td>
<td>Quiz 16 – 5B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Module 5C</td>
<td>Quiz 17 – 5C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Module 5DE</td>
<td>Quiz 18 – 5DE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Cell Membranes</td>
<td>Ch10</td>
<td>Module 6A</td>
<td>Quiz 19 – 6A</td>
<td>Sunday July 9th 11:59 PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Module 6B</td>
<td>Quiz 20 – 6B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Module 6C</td>
<td>Quiz 21 – 6C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Membrane Transport</td>
<td>Ch 11</td>
<td>Module 7A</td>
<td>Quiz 22 – 7A</td>
<td>Sunday July 9th 11:59 PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Module 7B</td>
<td>Quiz 23 – 7B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Module 7C</td>
<td>Quiz 24 – 7C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Discussion 3</td>
<td>Lectures 4-7</td>
<td></td>
</tr>
<tr>
<td>Week #</td>
<td>Lect #</td>
<td>Lecture Name</td>
<td>Text Reading</td>
<td>Lecture Video Modules</td>
<td>Quiz & Discussion</td>
<td>Due Date</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Week 3</td>
<td>7/10</td>
<td>Exam 1 Tuesday July 11<sup>th</sup></td>
<td>Humanities 1003</td>
<td>Lec 1-7</td>
<td>6:30 – 8:30 PM</td>
<td>Sunday July 16<sup>th</sup> 11:59 PM</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Endoplasmic Reticulum</td>
<td>Chapter 12</td>
<td>Module 8A Module 8B Module 8C</td>
<td>Quiz 25 – 8A Quiz 26 – 8B Quiz 27 – 8C</td>
<td>Sunday July 16<sup>th</sup> 11:59 PM</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Golgi, Lysosomes</td>
<td>Chapters 12 & 13</td>
<td>Module 9A Module 9B Module 9C</td>
<td>Quiz 28 – 9A Quiz 29 – 9B Quiz 30 – 9C Discussion 4 Lectures 8-9</td>
<td>Sunday July 16<sup>th</sup> 11:59 PM</td>
</tr>
<tr>
<td>Week 4</td>
<td>7/17</td>
<td>Post-Trans targeting to nucleus, mitochondria, chloroplasts</td>
<td>Chapters 12 & 13</td>
<td>Module 10A Module 10B Module 10C Module 10D</td>
<td>Quiz 31 – 10A Quiz 32 – 10B Quiz 33 – 10C Quiz 34 – 10D</td>
<td>Wednesday July 19<sup>th</sup> 11:59 PM</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Cytoskeleton</td>
<td>Chapter 16</td>
<td>Module 12A Module 12B Module 12C Module 12D</td>
<td>Quiz 39 – 12A Quiz 40 – 12B Quiz 41 – 12C Quiz 42 – 12D Discussion 5 Lectures 10-12</td>
<td>Sunday July 23<sup>rd</sup> 11:59 PM</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Immune system</td>
<td>Chapter 24</td>
<td>Module 14A Module 14B Module 14C</td>
<td>Quiz 48 – 14A Quiz 49 – 14B Quiz 50 – 14C Discussion 6 Lectures 13-14</td>
<td>Sunday July 30<sup>th</sup> 11:59 PM</td>
</tr>
<tr>
<td>Week 6</td>
<td>7/31</td>
<td>Exam 2 Tuesday August 1<sup>st</sup></td>
<td>Humanities 1003</td>
<td>Lec 8-14</td>
<td>6:30 – 8:30 PM</td>
<td>Sunday August 6<sup>th</sup> 11:59 PM</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Cell Cycle Part 1 Intro</td>
<td>Chapter 17</td>
<td>Module 16A Module 16B Module 16C</td>
<td>Quiz 55 – 16AB Quiz 56 – 16C Discussion 7 Lectures 15-16</td>
<td>Sunday August 6<sup>th</sup> 11:59 PM</td>
</tr>
<tr>
<td>Week #</td>
<td>Lect #</td>
<td>Lecture Name</td>
<td>Text Reading</td>
<td>Lecture Video Modules</td>
<td>Quiz & Discussion</td>
<td>Due Date</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Week 7 8/7</td>
<td>17</td>
<td>Cell Cycle Part 2 G1, S</td>
<td>Chapter 17</td>
<td>Module 17A Module 17B Module 17C</td>
<td>Quiz 57 – 17A Quiz 58 – 17BC</td>
<td>Wednesday August 9th 11:59 PM</td>
</tr>
<tr>
<td>18</td>
<td>Cell Cycle Part 3 G2, M</td>
<td>Chapter 17</td>
<td>Module 18A Module 18B Module 18C</td>
<td>Quiz 59 – 18A Quiz 60 – 18B Quiz 61 – 18C</td>
<td>Wednesday August 9th 11:59 PM</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Cancer</td>
<td>Chapter 20</td>
<td>Module 19A Module 19B Module 19C</td>
<td>Quiz 62 – 19A Quiz 63 – 19B Quiz 64 – 19C Discussion 8 Lectures 17-19</td>
<td>Sunday August 13th 11:59 PM</td>
<td></td>
</tr>
</tbody>
</table>

Week 8 8/14

Study for Exam 3

Exam 3 Thursday 8/17 Humanities 1003 Lec 15-19 6:30 – 9:30 PM

Course policies are subject to change. It is the student’s responsibility to check Blackboard for corrections or updates to the syllabus. Any changes will be posted in Blackboard.