Biology Major Checklist for the Specialization in Neuroscience

Name: ____________________________ SB ID: ____________________________ Today’s Date: __________

Overall GPA: _____________________ Anticipated Graduation Date: ____ Future Plans: ______________________

Please refer to the Undergraduate Bulletin for the official policy, full course options, and requirements in detail.

Foundational Courses in Related Fields
At least one semester of the two-semester sequences of required courses in calculus, organic chemistry lecture, and physics lecture/lab must be passed with a letter grade of C or higher.

<table>
<thead>
<tr>
<th>General Chemistry</th>
<th>Molecular Science 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Chemistry 1</td>
<td>Molecular Science 1 lab</td>
</tr>
<tr>
<td>General Chemistry 1 lab</td>
<td>Molecular Science 2</td>
</tr>
<tr>
<td>General Chemistry 2</td>
<td>Molecular Science 2 lab</td>
</tr>
<tr>
<td>General Chemistry 2 lab</td>
<td>Molecular Science 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organic Chemistry</th>
<th>Molecular Science 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Chemistry 1</td>
<td>Molecular Science 2 lab</td>
</tr>
<tr>
<td>Organic Chemistry 2</td>
<td>Molecular Science 3</td>
</tr>
<tr>
<td>Organic Chemistry lab</td>
<td>Molecular Science 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculus, Statistics and Physics*</th>
<th>Statistics: BIO 211, AMS 110 or AMS 310</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus Semester 1</td>
<td>Physics Semester 1</td>
</tr>
<tr>
<td>Calculus Semester 2</td>
<td>Physics Lab Semester 1</td>
</tr>
<tr>
<td>Physics Semester 2</td>
<td>Physics Lab Semester 2</td>
</tr>
</tbody>
</table>

* The Classical Physics A, B, C sequence requires 3 semesters of physics lecture.

Core Courses in Biology

<table>
<thead>
<tr>
<th>Lecture courses</th>
<th>Lab Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 201: Organisms to Ecosystems</td>
<td>BIO 204</td>
</tr>
<tr>
<td>BIO 202: Molecular and Cellular Biology</td>
<td>BIO 205 or BIO 207</td>
</tr>
<tr>
<td>BIO 203: Cellular and Organ Physiology</td>
<td></td>
</tr>
</tbody>
</table>

Stony Brook Curriculum Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 458</td>
<td>Speak Effectively Before an Audience (SPK)</td>
</tr>
<tr>
<td>BIO 459</td>
<td>Write Effectively in Biology (WRTD)</td>
</tr>
</tbody>
</table>

Advanced Course Requirements for the Specialization in Neuroscience

The list of Advanced BIO Courses and Accepted Electives for the Biology Major can be found on the back of this page. All courses must be passed with a letter grade of C or higher. The Specialization in Neuroscience requires:

1. BIO 334 Principles of Neurobiology
2. BIO 335 Neurobiology Laboratory
3. Two of the following related lecture courses: BIO 317, BIO 328, BIO 337, BIO 338, BIO 339, ANP 316, BCP 401
4. Two additional advanced lecture courses from either Area I, Area III, or Area IV from the list of Advanced BIO Courses and Accepted Electives.
5. One additional advanced laboratory course from any Area.
6. Additional advanced lecture, laboratory, reading, or independent research courses, as needed, for a minimum of 20 credits of advanced biology coursework.

Required Specialization Courses

<table>
<thead>
<tr>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 334</td>
</tr>
<tr>
<td>BIO 335</td>
</tr>
</tbody>
</table>

Related Lecture Courses

<table>
<thead>
<tr>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related Lecture Course I</td>
</tr>
<tr>
<td>Related Lecture Course II</td>
</tr>
</tbody>
</table>

Outside of Specialization Credit Total

<table>
<thead>
<tr>
<th>Course</th>
</tr>
</thead>
</table>

Upper-Division Writing Requirement

The advanced writing component of the major in Biology requires registration in the 0-credit BIO 459 and approval of either a term paper or a laboratory report written for an advanced course in the biological sciences at Stony Brook.

Transfer students must take at least 15 credits of required core and advanced biology at Stony Brook in courses for majors at the 200 level or higher. Both of the two advanced laboratory experiences must be taken at Stony Brook.
Advanced BIO Courses and Accepted Electives for the Biology Major

The advanced BIO courses and Accepted Electives are listed below in groupings that correspond to four broad areas of biology. The advanced courses are listed below as: Course Indicator, Course Name, Course Type (lecture or lab), and semester usually offered. Please refer to the Undergraduate Bulletin for full course options, descriptions, policies, and pre-requisites in detail.

Area I: Biochemistry, Molecular and Cellular Biology:
- BIO 302 Human Genetics (Lec)(FALL)
- BIO 303 Advanced Human Genetics (Lec/Lab)(SPRING)
- BIO 310 Cell Biology (Lec)(SPRING)
- BIO 311 Techniques in Molecular and Cellular Biology (Lab)(SPRING)
- BIO 312 Bioinformatics and Computational Biology (Lab)(FALL)
- BIO 314 Cancer Biology (Lec)(FALL)
- BIO 315 Microbiology (Lec)(SPRING)
- BIO 316 Molecular Immunology (Lec)
- BIO 320 General Genetics (Lec)(SPRING)
- BIO 361 Biochemistry I (Lec)(FALL)
- BIO 362 Biochemistry II (Lec)(SPRING)
- BIO 364 Laboratory Techniques in Cancer Biology (Lab)(FALL)
- BIO 365 Biochemistry Laboratory (Lab)(FALL)
- BIO 368 Food Microbiology Laboratory (Lec)
- AMS 333 Mathematical Biology (Lec)(FALL)
- BIO 511 Topics in Biotechnology (Lab)(SPRING)
- BIO 515 Current Topics in Microbiology (Lab)(FALL)
- BME 304 Genetic Engineering (Lec)(SPRING)
- BME 404 Essentials of Tissue Engineering (Lec)(SPRING)
- CHE 346 Biomolecular Structure and Reactivity (Lec)(SPRING)
- HBM 320 General Microbiology (Lec, not for credit in addition to BIO 315)

Area II: Neurobiology and Physiology
- BIO 317 Principles of Cellular Signaling (Lec)(FALL)
- BIO 328 Mammalian Physiology (Lec)(SPRING)
- BIO 332 Computational Modeling of Physiological Systems (Lec)(SPRING)
- BIO 334 Principles of Neurobiology (Lec)(SPRING)
- BIO 335 Neurobiology Laboratory (Lab)(FALL)
- BIO 337 Neurotransmission and Neuromodulation: Implications for Brain Function (Lec)(SPRING)
- BIO 338 From Synapse to Circuit: Selforganization of the Brain (Lec)(FALL)
- BIO 339 Molecular Development of the Nervous System (Lec)(SPRING)
- ANP 316 The Evolution of the Human Brain (Lec)(SPRING)
- BCP 401 Principles of Pharmacology (Lec)(FALL)
- BME 301 Bioelectricity (Lec)(SPRING)
- BME 303 Biomechanics (Lec)(FALL)

Area III: Organisms
- BIO 325 Animal Development (Lec)(FALL)
- BIO 327 Developmental Genetics Laboratory (Lab)(SPRING)
- BIO 341 Plant Diversity (Lec/(Lab)(SPRING)
- BIO 343 Invertebrate Zoology (Lec/Lab)(FALL)
- BIO 344 Chordate Zoology (Lec)/(Lab)(SPRING)
- BIO 366 Molecular Microbiology Laboratory (Lab)(Lec)(FALL)
- MAR 370 Marine Mammals (Lec)(FALL)
- MAR 371 The Biology and Conservation of Marine Birds and Sea Turtles (Lec)
- MAR 375 Marine Mammal and Sea Turtle Rehabilitation (Lec/Lab)(SPRING)
- MAR 376 Marine & Conservation/ Sea Turtles (Lec)(FALL)
- MAR 377 Marine Biology & Conservation/Sea Birds (Lec)(SPRING)
- MAR 380 Ichthyology (Lec/Lab)(FALL)

Area IV: Ecology and Evolution
- BIO 301 Sustainability of the Long Island Pine Barrens (Lec)
- BIO 304 Genomics (Lec/Lab)(FALL)
- BIO 305 Genomics Laboratory (Lec/Lab)(SPRING)
- BIO 319 Landscape Ecology Laboratory (Lab)(FALL)
- BIO 321 Introduction to Ecological Genetics and Genomics (Lec)(FALL)
- BIO 336 Conservation Biology (Lec)(FALL)
- BIO 350 Darwinian Medicine (Lec)(FALL)
- BIO 351 Ecology (Lec)(FALL)
- BIO 352 Ecology Laboratory (Lab)(FALL)
- BIO 353 Marine Ecology (Lec)(SPRING)
- BIO 354 Evolution (Lec)(FALL)
- BIO 356 Applied Ecology and Conservation Biology Laboratory (Lab)(SPRING)
- BIO 358 Biology and Human Social and Sexual Behavior (Lec)(SPRING)
- BIO 359 Behavioral Ecology (Lec)(FALL)
- BIO 371 Restoration of Aquatic Systems (Lec/Lab)(FALL)
- BIO 385 Plant Ecology (Lec)(SPRING)
- BIO 386 Ecosystem Ecology and the Global Environment (Lec)(SPRING)
- ENS 311 Ecosystem Ecology and the Global Environment (Lec, not for credit in addition to BIO 386)(SPRING)
- MAR 301 Environmental Microbiology (Lec/Lab)(FALL)
- MAR 302 Marine Microbiology and Microbial Ecology (Lec, not for credit in addition to MAR 301)(SPRING)
- MAR 303 Long Island Marine Habitats (Lec/Lab)(FALL)
- MAR 305 Experimental Marine Biology (Lab)(FALL)
- MAR 315 Marine Conservation (Lec)(SPRING)
- MAR 320 Limnology (Lec/Lab)(SPRING)
- MAR 373 Marine Apex Predators: Ecology and Conservation (Lec)(FALL)
- MAR 384 Diseases of Aquatic Organisms (Lec)(SPRING)

Study Abroad Course Options in Area IV

Jamaica:
- MAR 388 Tropical Marine Ecology (Lec/Lab)(WINTER)

Turkana Basin:
- ANP 304 Modern and Ancient Environments of Eastern Africa (Lec/Lab)
- ANP 305 Vertebrate Paleontology of the Turkana Basin (Lab) of the Turkana Basin (Lec/Lab)

Madagascar:
- ANP 307 Comparing Ecosystems in Madagascar (Lec)
- ANP 326 Lemurs of Madagascar (Lec)
- ANP 325 Primate Behavior (Lec)
- ANP 350 Methods of Studying Primates (Lec)
- ANP 391 Topics in Physical Anthropology (Lec)

Environmental Biology Electives (May only be used for the Environmental Biology Specialization)
- ATM 305 Global Atmospheric Change (Lec)
- ATM 397 Air Pollution and its Control (Lec)(SPRING)
- MAR 318 Engineering Geology and Coastal Processes (Lec)
- MAR 333 Coastal Oceanography (Lec)(SPRING)