AMS Qualifying Exam (June 2016): Probability Questions

Solve any three of the following four problems.

All problems are weighted equally. On this cover page write which three problems you want graded.

problems to be graded:

__

Name (PRINT CLEARLY), ID number

__
1. Let X and Y be two independent exponential random variables with respective parameters λ and μ. Assume that $\mu < \lambda$. Let Z be equal to X with probability μ/λ and equal to $X + Y$ with probability $1 - \mu/\lambda$. Find the probability distribution function of Z.

2. Two points X and Y are independently and uniformly selected inside of a circle A with radius r, i.e., each has density $\frac{1}{\pi r^2}$ inside of the circle. Let d be the distance between X and Y. Denote by B the circle centered at X with radius d. What is the probability that circle B is contained in circle A? *Hint: consider the largest circle centered at X and inscribed in A.*

3. Let X and Y be jointly continuous with joint probability density function

$$f(x, y) = \frac{1}{x}, \quad 0 \leq y \leq x \leq 1.$$

Find the probability density function of $Z = X + Y$.

4. Let X and Y be two independent integer-valued random variables with $P(X = i) = (e - 1)e^{-i}$, $P(Y = j) = \frac{1}{(e-1)j!}$ for $i, j = 1, 2, \ldots$. Let $U = \max\{U_1, U_2, \ldots, U_Y\}$, where $\{U_i\}$ is a sequence of i.i.d. uniform random variables on $(0, 1)$. Assume that the sequence $\{U_i\}$ is also independent of X and Y. Find the probability distribution function of $Z = X - U$.